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Abstract— Ultrasound (US) imaging is commonly employed
for the diagnosis and staging of abdominal aortic aneurysms
(AAA), mainly due to its non-invasiveness and high availability.
High inter-operator variability and a lack of repeatability of
current US image acquisition impair the implementation of
extensive screening programs for affected patient populations.
However, this opens the way to a possible automation of
the procedure, and recent works have exploited the use of
robotic platforms for US applications, both in diagnostic and
interventional scenarios. In this work, we propose a system for
autonomous robotic US acquisitions aimed at the quantitative
assessment of patients’ vessel diameter for abdominal aortic
aneurysm screening. Using a probabilistic measure of the US
quality, we introduce an automatic estimation of the optimal
pressure to be applied during the acquisition, and an online
optimization of the out-of-plane rotation of the US probe to
maximize the visibility of the aorta. We evaluate our method
on healthy volunteers and compare the results to manual
acquisitions performed by a clinical expert, demonstrating the
feasibility of the presented system for AAA screening.

I. INTRODUCTION

Ultrasound (US) imaging has become the first-line imag-
ing modality for multiple medical indications, including the
focused assessment with sonography for trauma (FAST) as
a routine emergency workflow or general vascular condi-
tions [1], [2]. Due to its non-invasiveness and swift imaging
capabilities, ultrasound is well suited for screening applica-
tions. One target area with a high associated benefit from
routine screening would be the abdominal aortic aneurysm
(AAA), a dilation (ballooning) of one of the major vessels
in the human body. The major risk of an AAA is the rupture
of the aneurysm, which is associated with high mortality
rates up to 50%. The probability for rupture depends on the
size, shape and stress of the aneurysm, with a substantially
increased risk for diameters above 6 cm [3]. Ultrasound is
already employed as a standard diagnostic tool for the imag-
ing of the aorta, and US-based staging is widely accepted
in clinical practice [4]. However, challenges with respect
to inter-operator variability and standardized measurement
approaches still impair the implementation of national or
international sonography-based screening programs [4], [5],
[6]. In contrast to conventional clinical 2D ultrasound, 3D
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US showed an improved localization of aneurysm-shape
and endoleak after Endovascular Aortic Repair (EVAR)
compared to 2D US, using contrast-enhanced imaging [7].
Based on the extraction of quantitative values from these
data, a 3D ultrasound scanning system with reproducible and
constant acquisition quality could facilitate the establishment
of screening frameworks. While the patient benefit from an
early detection and regular check for aortic aneurysms is ob-
vious in such a program, discussions about the overall cost-
effectiveness of potential screening activities remain [8]. The
full automation of the acquisition using robotic technology
would reduce personnel costs a major factor for the data
acquisition while achieving full comparability of acquired
data. In addition, work-related musculoskeletal discomfort
of US examiners could be reduced [9].

In the past decades, attempts for generating operator-
independent 3D ultrasound data focused on motorized
probes [10], freehand 3D approaches [11], partially also
combined with ECG-gating [12] and more recently pulse-
oximetry [13] to remove artifacts due to vessel pulsation.
While today’s methods achieve higher repeatability of the
acquired data, they lack an automation of the acquisition
itself. In view of servoing approaches, US probes are used
and guided by robotic systems for needle placement [14], as
well for showing a constant anatomical position by breathing
compensation [15], an automatic optimization of the US
probe direction for optimal acoustic coupling [16] and the
automatic servoing based on live image registration [17].
Finally, first attempts for fully automated ultrasound acqui-
sitions used RGB skin feature detection following a rigid
acquisition protocol for liver ultrasound [18], and performed
acquisitions based on previously planned trajectories on
tomographic image data [19].

In this work, we present a fully autonomous framework
to acquire abdominal 3D US images to facilitate AAA
screening in clinical routine. Designed to cope with a high
anatomical variety in the general population, our system
aims to adapt the performed US trajectory to the individual
patient. To this end, we elastically register the patient to a
generic MRI-based atlas, and autonomously perform a force-
optimized robotic US scan of the abdominal aortic region,
allowing for manual diameter measurements. In particular,
our contributions are as follows:
a) In contrast to [19], a deformable registration in combina-

tion with a generic patient atlas is employed to account
for various body sizes and shapes. In this way, patients
for whom no tomographic imaging data is available can
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Fig. 1. a) System setup showing the robot, the US transducer mounted to its end-effector, the RGB-D camera on the ceiling, the patient, a coronal slice
of the MRI atlas, and all required transformations, including the camera-to-robot ( TC

W ) and extrinsic US probe calibrations ( TT
E ). The red-dotted line

indicates the scan trajectory. b) Close-up of the US transducer, showing the US imaging plane (thick black line) and the out-of-plane rotation angle α.

undergo the proposed screening protocol.
b) Similarly, due to the great variety of possible patient

conditions, there is a need for an adaptive parametrization
of the employed contact force of the US transducer onto
the skin [4]. In this work, we propose to utilize confidence
maps [20] to automatically determine the optimal force
for the US scan.

c) Finally, we propose a control law based on confidence
maps as an adapted version of [16] targeted at our applica-
tion. In this regard, we initially estimate and continuously
adjust the out-of-plane rotation of the US transducer
during the acquisition. This enables the optimization of
the image quality at specified penetration depths (e.g.
aorta), compensating for shadowing artifacts due to the
presence of bowel gas.

II. METHODS

The presented autonomous screening system consists of
a robotic manipulator, allowing for force estimation at its
end-effector by means of internal joint torque sensors, and
a rigidly attached US transducer. In addition, a structured-
light RGB-D camera is mounted at the ceiling of the exam-
ination room, as illustrated in Fig. 1a. In this section, we
first describe the registration between the MR-atlas and the
patient using RGB-D data in Sec. II-A. Then, we summarize
in Sec. II-B how the signal loss in US images is estimated
in the form of confidence maps. While in Sec. II-C, the
overall robot control scheme is introduced, specific details
concerning the force estimation and out-of-plane control are
described in Sec. II-D and II-E, respectively.

A. Patient Registration and Trajectory Transfer

The aim of a global patient-to-world registration is to
gather knowledge about the current patient position with
respect to the system setup, so that accurate and safe motions
of the robotic arm can be achieved. We exploit the sensing

information of a RBG-D camera to transfer a generic trajec-
tory aimed at the aorta of an atlas onto the current patient.

For camera-to-robot calibration, we employ a technique
based on augmented reality markers similar to the approach
in [19] to determine the transformation CTW (cf. Fig. 1a).
Note that the computer vision notation for transformations,
i.e. 4×4 homogeneous matrices, are used in this work.

Given the wide target population of a screening program,
it is not feasible to assume the availability of individual
tomographic images for each patient. Hence, we propose
to leverage a statistical MRI atlas based on physical and
anatomical characteristics, such that the anatomy of each
patient can be taken into account for the trajectory plan-
ning [21]. A surface point cloud PMRI extracted from a
selected MRI atlas image can be elastically registered to the
live point cloud PRGBD obtained from the RGB-D camera.
We make use of an implementation of the Coherent Point
Drift algorithm [22], a probabilistic non-rigid registration
method that fits a Gaussian Mixture Model (GMM) to the
moving point set. The GMM is initialized using the target
points PRGBD and a coherent velocity is enforced to its
motion so that a smooth non-linear transformation ΦGMM :
R4 → R4 can be computed using spline interpolation. Both
point sets are subsampled by a factor fs for this process,
allowing for an optimal trade-off between the fitting accuracy
and the computational performance.

By a projection of the start- and endpoint (ps,pe ∈ R4) of
the aortic region of interest from the atlas to its surface, the
robotic trajectory on the patient surface (p′s,p

′
e) is obtained

by transfering these points to the world coordinate system

p′s = TC W · ΦGMM [fNN (ps, ez)] , (1)

where ez = (0, 0, 1, 0) is the vertical unit vector, and
fNN (p,n) computes the nearest element of the point cloud
PMRI to the ray p + λn, λ ∈ R0 (analogous for p′e).



B. US Acquisition and Confidence Map Computation

In our framework, a series of 2D B-mode frames Ii ∈ R2

are acquired using a convex transducer suited for abdominal
scans. For an estimation of the ultrasound quality, we employ
confidence maps as introduced by [20]. In short, a graph is
constructed between the pixels of the B-mode image, with
source (1) and sink (0) nodes at the transducer elements and
the bottom of the image, respectively, and edge weights based
on the US intensities between pixels. The confidence map
Ci ∈ R2 → [0, 1] is then defined as the equilibrium diffusion
solution, i.e. the probability of a random walk starting from a
particular pixel to rather reach the transducer than the bottom
(see Fig. 3a). We refer the reader to [23] for further details.
For any given US frame, we denote with the feature

ζ =
1

|R|
∑

(x,y)∈R

C(x, y), (2)

the average confidence in the rectangular region R, centered
around the estimated world-coordinate location of the aorta
in the corresponding B-mode frame I . Since the spine and
the aorta are almost incompressible, it can be estimated from
the atlas as in Eq. 1 and considered constant regardless of
the current force onto the patient. The averaging copes with
the inherent level of noise in confidence maps [24].

C. Robot Control Scheme

The overall goal of the robot control scheme is threefold:
First, the US sweep acquisition requires following a prede-
fined trajectory on the patient. Second, the force exerted by
the US transducer onto the tissue is intended to not only
be sufficient but also optimal over time, achieving good
acoustic coupling throughout the sweep. Third, the out-of-
plane rotation needs to be adjusted on-line to maintain high
image quality even in the presence of bowel gas, shadowing,
and other artifacts. Considering the desired tool-tip pose

Pd =

[
R(α, β, γ) t

0 1

]
(3)

with translation t = (x, y, z) and rotation R using the
Euler angles (α, β, γ), it is possible to decouple the three
tasks. A standard position controller is used to command
translations (x, y) in the horizontal plane, guided by the
planned trajectory.

D. Adaptive Force Estimation

The downward translational component z is controlled by
a force controller as already demonstrated in prior art [16],
[17], [25]. Constant force control for manipulators with
elastic joints is typically achieved by balancing external
Cartesian forces Fext acting on the end-effector with a
desired force Fd so that Fext − Fd = 0, as historically
described in [26]. For real-time behavior, torque sensors in
all robotic joints are utilized to compute the external forces
using both the Jacobian and the known inverse dynamics
system of the manipulator.

Although the area of general robotic force control has
been extensively discussed throughout the last decades, the

choice of an appropriate force Fd for a particular medical
scenario depended on a manual parametrization up to now.
While too little pressure will compromise good acoustic
coupling and sufficient image quality during US acquisitions,
excessive force might overly deform the anatomy or even
harm the patient. In the view of a fully autonomous robotic
system for US screening, an optimal force value cannot be
known a priori but has to be estimated online to cope with a
variety of patients constitution and tissue density. Therefore,
we propose an online adaptive force estimation based on
confidence values presented in II-B. During initialization,
we vertically approach the start pose p′s until skin contact
(Fd0 = 0). Next, the desired force exerted onto the tissue
is increased iteratively by Fstep until a mean confidence
threshold Θ is reached (H is the Heaviside step function):

Fdi+1 = Fdi + Fstep ·H (Θ− ζi) . (4)

E. Optimization of Out-of-Plane Rotation

The Euler angles (α, β, γ) of the pose Pd can be inter-
preted as out-of-plane rotation, in-plane rotation, and rotation
around the transducer axis, respectively. Contrary to the
target anatomies investigated in [16], [17], axial aortic scans
benefit only marginally from in-plane or transducer axis
rotation: On the one hand, turning the US probe around its
axis does not avoid acoustic obstacles between the transducer
and the aorta. On the other hand, an in-plane rotation during
axial scans constitutes lateral tilting, quickly translates the
aorta away from the image center, and is not considered
helpful in clinical routine [7]. Thus, we define β = γ = 0
for all experiments and concentrate on the more challenging
out-of-plane rotation α for image quality optimization.

Initially, a sweep is acquired with angles between
[αmin;αmax], where the confidence feature ζα is recorded
for each rotatory pose. The optimal out-of-plane rotation α0

for the start point of the sweep is then defined as the angle
that maximizes confidence at the aorta: α0 = arg maxα ζα.

Throughout the acquisition, we aim to maintain an optimal
echoing pose. As the direction to tilt the probe out of its plane
cannot be directly inferred from 2D frames, we propose to
compute the following parameters for each frame. First, the
binary parameter κ indicates a drop in confidence below the
average of the preceding M frames

κ = H

ζi − 1

M

i−1∑
j=i−M−1

ζj

 . (5)

It is used to determine whether the current probe orientation
provides sufficient image quality. Second, the parameter s ∈
{−1, 1}, s0 = 1, states the direction the probe should tilt to:

si =

−si−1 if ζi < ζi−M ∧

∣∣∣∣∣ i−1∑
j=i−M−1

sj

∣∣∣∣∣ = M

si−1 else .

(6)

As a result, s will change sign only if there has not been
a change in the previous M iterations, and the current



F=5N, breath-hold F=20N, breath-hold F=20N, breathing

Fig. 2. Results of force adaptation experiments for one subject, including the measured vertical position of the transducer and the corresponding force
(figures on the left), and axial (top) and sagittal (bottom) slices of the compounded US volumes. Without proper force onto the tissue (5 N experiment,
left image column), the US quality at the aorta, in particular its posterior wall, is poor (orange box). Quality improves with the adaptive force estimation
(20 N experiments, center column). Results also show that the force controller can successfully account for breathing motion and allows for steady aortic
acquisitions, even if the US image of tissue directly underneath the skin becomes unusable (right image column). Yellow arrows indicate the scan direction.

confidence dropped below the one M iterations ago. Alto-
gether, the desired out-of-plane rotation can be computed by
combining these factors αi = αi−1 + κ · s · αstep. Updates
of α as thus not continuous but are handled by the position
controller in a smooth fashion as in [19].

III. EXPERIMENTS AND RESULTS

A. Material and Experimental Setup

The robotic manipulator used in this work is a KUKA
LWR iiwa R800 (KUKA Roboter GmbH, Augsburg, Ger-
many) with the KUKA Sunrise.Connectivity software pack-
age. A software module1 developed by the authors allows a
direct control of the robot functionalities via the Robot Op-
erating System2 (ROS) framework. The methods presented
in Sec.II are implemented in custom ROS modules, which
forward their control output to the KUKA robot controller.
For US acquisition, an Ultrasonixr Sonix RP US system
equipped with a 4DC7-3/40 curvilinear transducer (Ana-
logic Corporation, Peabody, MA, USA) is used (frequency:
3.3 MHz, depth: 140 mm, gain: 50%). The US probe is
attached to the robot flange using a custom designed holder
(cf. Fig. 1b). Spatial and depth information are acquired
using a Kinect camera (Microsoft Corporation, Redmond,
WA, USA) placed above the patient. Experiments ran on a
workstation (Intel Core i5, NVIDIA GTX 970) connected
to the aforementioned systems. Medical image processing
is performed within the ImFusion Suite 1.2.16 (ImFusion
GmbH, Munich, Germany). The performed camera-to-robot
calibration led to an average error of 2.46±0.96 mm on the
x-y plane and 6.42±3.67 mm along the camera’s depth axis.

We evaluated our method on five different healthy vol-
unteers (age 24-27, 2 female, 3 male), scanning the aorta

1 https://github.com/SalvoVirga/iiwa_stack
2 http://www.ros.org/

from slightly inferior of the rib cage in downward direction
roughly until the navel (scanning time approx. 2 minutes per
patient). The atlas consisted of a T2-weighted MR image
(resolution 1.2×1.2×6 mm) of one healthy individual (age
26, male), which was deemed sufficient for this volunteer
study due to the similar anatomical condition. Similar to [19],
the Hausdorff distance between PRGBD and the warped atlas
surface mesh was on average 3.7 mm (maximum 9.8 mm),
robustly allowing the visualization of the aorta in the US
frame without further compensation. For all experiments, the
following set of parameters was used: fs = 0.01, Fstep =
2 N, Fmax = 25 N, αstep = 2◦, M = 4 and the region
R comprised an area of 10× 10 px. The robot moved with
v = 5 mm/s during sweeps, and Θ was empirically set to 0.2.

B. Validation of Force Estimation

For all subjects, patient registration and several US acqui-
sitions were performed. In a first sweep, a minimum force
for US screening (5 N) was applied statically. For a second
sweep, the force estimation as described in Sec. II-D was
used, greatly improving the image quality as illustrated in
Fig. 2. As expected [16], the confidence is dependent on the
exerted force on the tissue, as visualized in Fig. 3b. In total,
the estimated force Fd was 14.8±6.4 N for all volunteers. In
a final sweep (only one volunteer), we tested the capabilities
of the robot controller to compensate for motion in real-
time to maintain a constant force. Therefore, we asked the
volunteer to perform one deep chest inhalation and then
breath abdominally throughout the acquisition. Results show
that the force controller maintained the desired force with an
average error of 0.17±0.24 N, and that a steady acquisition of
the (almost incompressible) aorta is possible while breathing.
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Fig. 3. a) Exemplary B-mode frame of the aorta, corresponding confidence
map, and expected center of the aorta (red). b) Confidence values at the
depth of the aorta during initial force estimation for one representative
subject, showing a degressive dependency on the exerted force. The final
force of 20 N was reached after the confidence exceeded Θ = 0.2 (circled).

C. Optimization of Out-of-plane Rotation

In a next set of experiments, we evaluated the impact of
the proposed out-of-plane rotation estimation. A first US
sweep was performed with static rotation, i.e. α = 0. A
representative case is depicted in Fig. 4. In particular in the
beginning of the sweep, shadowing artifacts made the aorta
not detectable. In contrast, the initial rotation estimation for
a second sweep determined an optimal angle of α = 9.2◦,
which led to a significantly increased confidence within the
first 30 mm of the sweep. For the remaining trajectory, our
controller gradually lowered the out-of-plane rotation and
maintained high confidence. For all subjects, the optimal
initial rotation was found to be α0 = 3.2± 8.0◦.

D. Aortic Diameter Measurements

In all five volunteers, the aortic diameter was measured
by a medical expert in the compounded US volumes in
sagittal and axial slices according to the guidelines in [4]. For

Without Optimization With Optimization

Fig. 4. Comparison between static out-of-plane rotation and optimization
based on confidence for one representative subject. The proposed method
avoids the shadowing in the beginning of the trajectory (orange box).
Throughout the acquisition, optimization of the rotation (top left) maintains
high confidence (top right). Yellow arrows indicate the scan direction.
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Fig. 5. Result of manual measurement as in clinical routine. a) M-mode
frame showing cross-section of the aorta over time, allowing for the selection
of B-mode frames corresponding to systole (S) and end-diastole (ED). b)
B-mode frame with zoomed window of the aorta, showing how inner (1),
outer (2), and leading-edge diameters (3) were determined.

comparison, a medical expert blind to formerly mentioned
measurements performed a standard US scan on each volun-
teer according to the clinical protocol as in [7] (see Fig. 5). In
particular, inner diameters din (without walls), outer diame-
ters dout (with walls) and leading-edge diameters dle (with
closer wall only) were measured. Table I reports the results
obtained in both scenarios. On average, the error between
manual US scan measurement and the ones performed in
the robotically acquired volumes was 0.5±0.3 mm.

IV. DISCUSSION

With regards to the aortic diameter measurement, our
results indicate that the proposed framework allows for the
same quantitative measurements as obtained in current clini-
cal practice (cf. Tab. I). The results also validate the adaptive
choice of the optimal contact force for the procedure, as the
values estimated by our method resulted in a superior image
quality. A low force would have led to an overall less visible
aorta, while a too high force could have compressed it, thus
affecting the diameter measurements. Additionally, the high
standard deviation of our automatic force estimation shows
the importance of a patient-specific pressure estimation. It
should be noted that in this work, all volunteers were within
a close range of age and physique, such that much higher
variations of various tissues layers can potentially impact
the overall ultrasound image quality and contact force for
more diverse patient populations. It is further interesting
that a good imaging of the aorta was also possible under
normal patient breathing (cf. Fig. 2). This might open up the
way for optimizations of the current acquisition protocol,
in the prospect of a system exploiting normal breathing.
With respect to the out-of-plane rotation of the transducer,

TABLE I
AVERAGE DIAMETER MEASUREMENT RESULTS [MM] (5 SUBJECTS)

Robotic Scan Manual Scan Error
S ED S ED S ED

din 13.50 11.68 13.38 11.58 0.32±0.13 0.54±0.22
dout 16.68 15.00 16.68 14.84 0.48±0.28 0.56±0.34
dle 15.08 13.34 15.00 13.08 0.52±0.38 0.46±0.15



obtained results demonstrated that the choice of an optimal
angle at the beginning, coupled with an ongoing optimization
throughout the sweep, leads to an overall improved image
quality (cf. Fig. 4). This is in line with clinical practice,
where the transducer is regularly tilted to avoid bowel gas
and to follow a potential curvature of the aorta [7]. It needs to
be noted, however, that reaching and maintaining the globally
optimal orientation is not guaranteed by the control scheme.
A more in-depth analysis of control stability and confidence
convergence is suggested for future studies.

Finally, the presented system allows for a further extension
to other applications, such as more complex diagnostic
procedures in the vascular domain. Beyond that, the system
could facilitate a broader implementation of robotic systems
for repetitive and already standardized medical practices.

V. CONCLUSION

In this work, we introduced a fully autonomous robotic
system aimed at ultrasound screening for abdominal aortic
aneurysms. We have demonstrated a generalized approach
to cope with the large variety of anatomies involved in
a screening program. Our results show improved quality
of 3D US acquisitions, and the clinical validation shows
comparable diameter measurements to the ones obtained fol-
lowing current standard of care. This work demonstrates the
potential impact of robotic systems on the medical domain,
especially in contexts demanding flexibility and adaptation
to individual patients. We believe that the generality of the
system, based on the foundations of prior work, enables its
extension to additional clinical applications and further helps
to promote the use of robotic systems in standard medical
care.
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