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ABSTRACT
The introduction of 2D array ultrasound transducers enables the instantaneous acquisition of ultrasound volumes in the
clinical practice. The next step coming along is the combination of several scans to create compounded volumes that
provide an extended field-of-view, so called mosaics. The correct alignment of multiple images, which is a complex task,
forms the basis of mosaicing. Especially the simultaneous intensity-based registration has many properties making it a
good choice for ultrasound mosaicing in comparison to the pairwise one.

Fundamental for each registration approach is a suitable similarity measure. So far, only standard measures like SSD,
NNC, CR, and MI were used for mosaicing, which implicitly assume an additive Gaussian distributed noise. For ultrasound
images, which are degraded by speckle patterns, alternative noise models based on multiplicative Rayleigh distributed noise
were proposed in the field of motion estimation.

Setting these models into the maximum likelihood estimation framework, which enables the mathematical modeling
of the registration process, led us to ultrasound specific bivariate similarity measures. Subsequently, we used an extension
of the maximum likelihood estimation framework, which we developed in a previous work, to also derive multivariate
measures. They allow us to perform ultrasound specific simultaneous registration for mosaicing. These measures have
a higher potential than afore mentioned standard measures since they are specifically designed to cope with problems
arising from the inherent contamination of ultrasound images by speckle patterns. The results of the experiments that we
conducted on a typical mosaicing scenario with only partly overlapping images confirm this assumption.
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1. DESCRIPTION OF PURPOSE
The recent introduction of 2D array ultrasound (US) transducers on the market will soon lead to a paradigm shift in sonog-
raphy, moving from 2D to 3D image acquisition. This shift may be further accelerated by the next generation of ultrasound
transducers with the CMUT (Capacitive Micromachined Ultrasound Transducer) technology, which are currently in the
phase of prototyping, offering superior and efficient volumetric imaging at a lower cost. One of the major drawbacks that
remains though, is the limited field-of-view (FOV) of the acquired images. The idea of mosaicing is to address this issue by
stitching several images taken from different poses to create a larger one. An example mosaic consisting of 4 acquisitions
of a baby phantom is shown in figure 1.

1.1 Clinical Value
The usage of ultrasound mosaicing provides the sonographers not just with a compounded volume of higher quality; recent
studies also state a couple of other clinical advantages that come along with the extended FOV. First, the spatial relationship
among structures that are too large for a single volume is easier to understand.1 Second, sonographers have the flexibility
to visualize anatomical structures from a variety of different angles.2, 3 Third, size and distance measurements of large
organs are possible.1, 4 Fourth, individual structures within a broader context can be identified by having an image of the
whole examination area.5 And last, because of the increased features in the compounded view, specialists that are used to
other modalities than ultrasound can better understand the spatial relationships of anatomical structures;6 helping to bridge
the gap between the modalities and making it easier to convey sonographic findings to other experts.
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Figure 1. Baby Phantom

But it is not just the improvement of already existing clinical workflows, the creation of high quality mosaics may
also create new medical applications for ultrasound that do not yet exist at all or are reserved for other modalities, so far.
Finally, three-dimensional mosaicing could be the application helping 3D imaging to gain widespread access in the clinical
practice, which it has not yet,7 although there are studies giving evidence that 3D imaging is superior to 2D imaging.8

1.2 Mosaicing Strategies
Crucial for a high quality stitching is the correct calculation of the spatial relationship of the acquisitions to each other.
In our earlier work,9 we investigated different rigid intensity-based registration strategies, which could be used in the mo-
saicing scenario. The major problems that we have identified are the significant overlap dependency of bivariate similarity
measures, favoring a total overlap of the volumes, and the error accumulation by using a sequence of pairwise registrations.
Simultaneous registration, instead, solved these problems; taking all the images into consideration reduces the overlap de-
pendency and accumulation errors do not show up since they are dealt with intrinsically during the registration process.
Moreover, in contrast to the bivariate ones, multivariate similarity measures take the whole available information into
account being especially important for viewing angle dependent US images.

1.3 Problem Statement
Sonography suffers from artifacts caused by coherent wave interference known as speckle. Speckle limits low resolution
image contrast and may even obscure true structures in high contrast regions. Therefore most of the works are interested
in reducing the speckle noise in the images by low-pass filtering, e.g. with a Gaussian filter.10, 11 Nevertheless, a recent
work on freehand 3D ultrasound uses speckle for the registration of the slices.12 This requires a permanent stream of
high-resolution scans from a similar viewing angle with a small spacing between slices. Hence, the same speckle patterns
will be visible on successive 2D images.

So far, only the standard similarity measures SSD, NCC, CR, and MI were used for 3D mosaicing, which are not
specifically designed for US images. Modeling the registration process mathematically by a maximum-likelihood estima-
tion (MLE) allows to derive these four measures by assuming a Gaussian distributed noise. But due to the influence of
speckle patterns in US images, it was shown that Rayleigh distributed noise is more appropriate.13 Based on this noise
assumption Strintzis, Kokkindis14 and Cohen, Dinstein15 developed likelihood terms for US motion estimation denoted by
SK1, SK2 and CD1, CD2, respectively.

We will use these ultrasound specific likelihood terms to deduce bivariate similarity measures and, in a second step, ex-
tend them to multivariate measures to make them work in our simultaneous registration framework, used for 3D ultrasound
mosaicing. The good results of Boukerroui et al.16 and Revell et al.,17 who used a bivariate extension of CD2, further
encouraged our intentions.

2. METHOD
In this section we will first present the deduction of ultrasound specific bivariate similarity measures and then, in a second
step, extend them to multivariate ones. Throughout the report, u and v are the images, T the rigid transformation, f the



intensity mapping, and ε the random variable a certain noise distribution. The log-likelihood function that we maximize in
the MLE framework is given by

logL(T,ε, f ) = logP(u|v,T,ε, f ) (1)
= log ∏

xk∈Ω

P(uk|vk,T,ε, f ). (2)

with the i.i.d. assumption on the spatial domain Ω. When deriving standard similarity measures like SSD, CR, NCC, and
MI, one assumes a Gaussian distributed additive noise, leading to the imaging model

u(x) = f (v(T (x)))+ ε. (3)

Since we are interested in mono-modal registration, we set the mapping to the identity f = id. The log-likelihood function
is

logL(T,ε) = −N · log
√

2πσ − 1
2 ∑

xk∈Ωu

(u(xk)− f (v(T (xk))))2

σ2 (4)

with the variance σ2, the overlapping region between the two images Ωu, and the cardinality of the overlap N = |Ωu|. Based
on this equation, one can look in the articles of Roche et al.18 and Viola19 to find the derivations of the afore mentioned
measures.

SK1: Multiplicative Rayleigh noise
The first model proposed by Strintzis, Kokkinidis14 is to use multiplicative Rayleigh distributed noise to represent speckle
patterns. The imaging process is described by

u(x) = v(T (x)) · ε (5)

with the Rayleigh distribution

P(y) =
π · y

2
· exp

(
−π · y2

4

)
, y > 0 (6)

having the variance 2
π

. Setting it into the MLE framework, equation (2), leads to:

logL(T,ε) = log ∏
xk∈Ω

1
v(T (xk))

P
(

u(xk)
v(T (xk))

)
(7)

≈ ∑
xk∈Ω

log
(

u(xk)
v(T (xk))2

)
− π

4
u(xk)2

v(T (xk))2 . (8)

SK2: Signal dependent Gaussian noise
The second model proposed by Strintzis and Kokkinidis14 uses signal dependent additive Gaussian distributed noise, being
expressed by

u(x) = v(T (x))+
√

v(T (x)) · ε (9)

with the Gaussian distribution

P(y) =
1√
2πσ

exp
(
− y2

2 ·σ2

)
, y > 0 (10)

and σ2 the variance. Setting it once again into the MLE framework leads to:

logL(T,ε) = log ∏
xk∈Ω

1√
v(T (xk))

exp
(
− [u(xk)− v(T (xk))]2

2 ·σ2 · v(T (xk))

)
(11)

= ∑
xk∈Ω

− log [v(T (xk))]−
[u(xk)− v(T (xk))]2

2 ·σ2 · v(T (xk))
. (12)



Figure 2. Speckle noise in baby phantom on low and high resolution.

CD1: Division of Rayleigh noises
The noise models of Strintzis, Kokkindis14 consider only one image to be degraded by noise, the other one has to be
noiseless, which is not possible in practice. Cohen, Dinstein15 assume each image to be contaminated by multiplicative
Rayleigh noises ε1 and ε2, respectively. This leads to the following noise model

u(x) = v(T (x)) · ε (13)

with
ε =

ε1

ε2
(14)

and the probability density function

P(y) =
2 · y

(y2 +1)2 , y > 0. (15)

The probability density function results from the division of two Rayleigh distributed random variables.20 The log-
likelihood function is:

logL(T,ε) = log ∏
xk∈Ω

1
v(T (xk))

P
(

u(xk)
v(T (xk))

)
(16)

= log ∏
xk∈Ω

1
v(T (xk))

2 · u(xk)
v(T (xk))((

u(xk)
v(T (xk))

)2
+1
)2 (17)

= ∑
xk∈Ω

log
2 ·u(xk)

v(T (xk))2 −2 · log

[(
u(xk)

v(T (xk))

)2

+1

]
(18)

≈ ∑
xk∈Ω

logu(xk)− logv(T (xk))− log

[(
u(xk)

v(T (xk))

)2

+1

]
. (19)

CD2: Logarithm of division of Rayleigh noises
The second model by Cohen, Dinstein15 considers next to the noise contamination of both images also the log-compressed
nature of ultrasound images by applying the logarithm to equation (13), leading to:

logu(x) = log(v(T (x)) · ε) (20)
= logv(T (x))+ logε. (21)

With setting ũ(x) = logu(x) and ṽ(x) = logv(T (x))

ε(x) = exp(ũ(x)+ ṽ(x)) (22)



SK1 SK2 CD1 CD2

∑
i 6= j

Ek

[
log
(

ik
j2k

)
− π

4
i2k
j2k

]
∑
i 6= j

Ek

[
log jk + (ik− jk)2

jk

]
∑
i 6= j

Ek

[
log ik

j2k

((
ik
jk

)2
+1
)−2

]
∑
i 6= j

Ek

[
ĩk- j̃k− log(e2(ĩk− j̃k)+1)

]
Table 1. Multivariate ultrasound specific similarity measures.

leading to the log-likelihood function:

logL(T,ε) = log ∏
xk∈Ω

exp(ũ(xk))
exp(ṽ(xk))

·P(exp(ũ(xk)− ũ(xk))) (23)

= log ∏
xk∈Ω

exp(ũ(xk))
exp(ṽ(xk))

· 2 · exp(ũ(xk)− ũ(xk))

[exp(ũ(xk)− ũ(xk))2 +1]2
(24)

= log ∏
xk∈Ω

2 · exp(2(ũ(xk)− ũ(xk)))

[exp(2(ũ(xk)− ũ(xk)))+1]2
(25)

≈ ∑
xk∈Ω

ũ(xk)− ṽ(xk)− log[exp(2(ũ(xk)− ṽ(xk)))+1]. (26)

2.1 Multivariate Similarity Measures
Essential for the usage of simultaneous registration strategies are multivariate similarity measures. In our previous work,9

we deduced a novel way of creating multivariate similarity measures by summing up their bivariate counterparts. In terms
of the MLE framework, with setting u↓i = ui(Ti(.)), the log-likelihood function is

logL(T ,~ε) = ∑
i

logP(u↓i |u
↓
1, . . . ,u

↓
i−1,u

↓
i+1, . . . ,u

↓
n,~ε) (27)

= ∑
i6= j

logP(u↓i |u
↓
j ,εi, j) (28)

with the noise vector~ε = (εi, j)i, j∈{1,...,n},(i 6= j), the n images U = {u1, . . . ,un}, and the corresponding transformations T =
{T1, . . . ,Tn}. Each summand corresponds to the bivariate formula of equation (2) from which we started the derivation of
the bivariate measures. A summary of the multivariate extensions of the similarity measures is shown in table 1. To make
the table clearer we set ik = ui(Ti(xk)), jk = u j(Tj(xk)), ĩk = logui(Ti(xk)), and j̃k = logu j(Tj(xk)).

3. RESULTS
An evaluation of the presented bi- and multivariate similarity measures was done on high and low resolution 3D ultrasound
acquisitions of a baby phantom. The high resolution data set has a resolution of 2563 voxel and the low resolution data
set 643 voxel. The reason for using two different resolutions is to find out whether ultrasound-specific similarity measures
make only sense, when imaging speckle at a high resolution. The data sets consists of four sequential acquisitions, see
figure 1. We plot the similarity measures by moving the second volume along the cranio-caudal axis and evaluate the
associated score values. The correct alignment of the volumes is at a displacement of 0.0 mm, and the total overlap of the
volumes is at -37.0 mm displacement. As a reference we also show the plot of SSD, see figure 3(a) and 4(a), respectively.

Like we mentioned already in our previous work,9 the bivariate similarity measures are significantly overlap dependent.
The bivariate plot of SSD for example, only has a local maximum at the correct position whereas the global maximum is
at the position of total overlap. Also SK1, SK2, and CD1 favor the total overlap, see figure 3(b) - 3(d) and 4(b) - 4(d),
respectively. The best performance shows CD2, although there is still a local maximum at the total overlap, the global
maximum is at the correct position, see figure 3(e) and 4(e). For the bivariate measures, we observe that there is no
difference between working on high or low resolution data.

In the multivariate case, in contrast, the measures show a clear maximum at the correct position and the similarity curve
becomes smoother when working on high resolution data sets. The graph of SK1, for example, is not very smooth in the



(a) SSD (b) SK1

(c) SK2 (d) CD1

(e) CD2

Figure 3. Similarity plots of the measures in table 1 together with SSD on low resolution baby phantom. The bivariate measures are
shown by a dashed line, the multivariate ones by a solid line (x-axis: displacement in mm, y-axis: score).

low resolution case and may therefore pose problems to the optimizer. The shape of the cost function obtained with SK2
is smoother, but the best results were received with CD1 and CD2. These results are corresponding to them of Cohen,
Dinstein15 and Boukerroui et al.16



(a) SSD (b) SK1

(c) SK2 (d) CD1

(e) CD2

Figure 4. Similarity plots of the measures in table 1 together with SSD on high resolution baby phantom. The bivariate measures are
shown by a dashed line, the multivariate ones by a solid line (x-axis: displacement in mm, y-axis: score).

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED
Three-dimensional ultrasound mosaicing has so far only been done with standard similarity measures where the charac-
teristics of US images have not been taken into consideration. In this article, we deduced bivariate ultrasound specific
similarity measures for SK1, SK2, and CD1. The deduction of CD2 has already been presented earlier by Boukerroui et
al.16 Moreover, we presented multivariate extensions for these measures, making simultaneous registration with ultrasound



specific measures possible.

5. CONCLUSION
We have used the maximum likelihood block matching motion estimation methods of Strintzis, Kokkinidis and Cohen,
Dinstein to derive ultrasound specific similarity measures. For this purpose, we set the proposed noise models into the
maximum likelihood estimation framework to derive bivariate measures and subsequently extended them to multivariate
similarity measures by using our earlier developed approach.9 We evaluated the performance of the proposed similarity
measures for three-dimensional ultrasound moisacing. The bivariate similarity measures had problems with the varying
amount of overlap, clearly favoring a total overlap of the volumes. Only CD2 performed well and found the correct spatial
relationship of the volumes. This can be attributed to the consideration of the log-compression of the US images.

In the case of multivariate similarity measures the general performance was much better, but also here the ones of
Cohen, Dinstein performed better than the ones of Stintzis, Kokkinidis. The reasons may be found in the better adapted
noise model, which considers both images to be degraded by a Rayleigh distributed noise. Further test will have to
be conducted to better differentiate the multivariate similarity measures, but the results from the bivariate ones already
indicated the necessity for ultrasound specific measures.
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