Motivation

- Analysis of a group of images requires their alignment
- Alignment of 2D face images, 3D tomosgraphic images, Ultrasound Mosaicing
- Pairwise registration methods with a priori chosen prior lead to bias introduction
- Simultaneous registration presents an interesting alternative but leads to a higher computational complexity because of
 - multivariate similarity measures
 - optimization in higher dimensional parameter space
- Direct estimation of multivariate measures is prohibitive because the dimension grows with the number of images
- We present multivariate similarity metrics and efficient optimization strategies

Multivariate Similarity Measures

- Formulate intensity-based registration as maximum likelihood estimation
 \[x = \text{arg max} \log p(I_1, I_2, ..., I_n | x) \]
- Approximations to avoid the estimation of the high-dimensional PDF

Efficient Non-Linear Optimization

Transformation Parameterization

Rigid Transformations do not form vector spaces but Lie Groups. We perform a geometric optimization where the group structure is taken care of intrinsically. Special Euclidean Group:

\[x \in SE(3) \]

The tangent space is the Lie algebra

\[s(3) = \{ \omega | \omega \in \mathbb{R}^3, \omega^T \omega = -I \} \]

Exponential map: Lie Algebra to Lie Group

\[\exp: s(3) \rightarrow SE(3) \]

Update step:

\[y = x \exp(h) = x \exp(n_i h_i) \]

Optimization Methods

Cost function

\[E(x) = \sum_{i,j} J_{f_i}(x) = \sum_{i,j} \frac{1}{2} |f_{ij}(x)|^2 \]

Taylor series

\[E(x \exp(h)) \approx E(x) + J_{f_i}(x) \cdot h + \frac{h^T \cdot H_{E}(x) \cdot h}{2} \]

Gauß-Newton

Linear approximation of \(F(x \exp(h)) \)

leading to

\[F(x \exp(h)) = \sum_{i,j} \frac{1}{2} |f_{ij}(x \exp(h))|^2 \]

\[\sum_{i,j} \frac{1}{2} f_{ij}(x \exp(h)) f_{ij}(x \exp(h)) \]

Gauss-Newton:

\[J_{f_i}(x \exp(h)) \approx J_{f_i}(x) + H_{f_i}(x) \cdot h \]

\[J_{f_i}^{\text{ESM}} = \frac{1}{2} J_{f_i}(x) + J_{f_i}(x \exp(h)) \]

Gradient Calculation

\[J_{f_i}(x \exp(h)) \approx J_{f_i}(x) + H_{f_i}(x) \cdot h \]

\[J_{f_i}^{\text{ESM}} = \frac{1}{2} J_{f_i}(x) + J_{f_i}(x \exp(h)) \]

Conclusion

- Strict mathematical deduction of the new similarity class APE
- Relation of APE to the Congealing framework and extension to CMP
- Derivation of steepest descent, Gauß-Newton, and ESM for APE
- Application of ESM to intrinsically non-squared similarity metrics CC, CR, MI
- Evaluation on 3D ultrasound data

We thank S. Behnmer, D. Zikic, and L. Zitke for invaluable discussions and Siemens Corporate Research for software tools and ultrasound data. This work was partly funded by the European Project "PASSPORT", ref. number 223904.