Configuration Strategies of an AR Toolkit-based Wide Area Tracker

The Second IEEE International AR Toolkit Workshop

Martin Wagner, Felix Loew
Lehrstuhl für Angewandte Softwaretechnik
Institut für Informatik
Technische Universität München
wagnerm@in.tum.de

16-Dez-03
Summary

• Scenario: mobile user in intelligent “AR-ready” building

• AR Toolkit used for
 – High-precision tracking in small areas
 – Coarse room-based wide area tracking ("ID tags")

• Software architecture for
 – Dynamic context aware reconfiguration of AR Toolkit marker detection
 – Room-dependent choice of transition strategies
Outline

• Scenario: Intelligent Building
• System Components
 – DWARF overview
 – Configuration components
• Distributed Configuration
 – Description of concepts
 – Detailed example scenario
• Strategies for Using AR Toolkit as Wide Area Tracker
• Conclusion & Future Work
Scenario: Intelligent Building

- User walks around in an intelligent building, wearing mobile client with camera and AR Toolkit
- AR apps tied to specific rooms, i.e. table-based AR in Lab
- Mobile client has no a priori knowledge of environment
- Detection of current room triggered by sets of Toolkit markers
Scenario: Requirements

- No a priori knowledge about environment:
 - Distributed architecture
 - Dynamic configuration
 - Split AR Toolkit functionality in components
- Trigger detection of room changes using AR Toolkit markers
 - Allow varying room-dependent strategies to increase robustness
 - Provide flexible architecture to use additional information sources (RF ID tags, ultra wideband trackers, ...)

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew

16-Dec-03
Outline

- Scenario: Intelligent Building
- System Components
 - DWARF overview
 - Configuration components
- Distributed Configuration
 - Description of concepts
 - Detailed example scenario
- Strategies for Using AR Toolkit as Wide Area Tracker
- Conclusion & Future Work
DWARF Overview

- Distributed Wearable Augmented Reality Framework
- CORBA-based middleware dynamically connects *Services* (DWARF components) based on description of their *Needs* and *Abilities*
- Ability descriptions may be enhanced using *Attributes* describing contextual information
- Many communication protocols
 - CORBA method invocations
 - CORBA notification service (events)
 - Shared memory (for video transmission)
Components - Overview

Video Grabber: gets video image and puts it in a shared memory segment

Marker Detection: takes video image out of shared memory, detects AR Toolkit markers, sends events describing position and ID of markers

Marker Loader: configures the Marker Detection using remote method invocation with marker descriptions suitable for the current context

Coarse Tracker: listens for events from Marker Detection and changes the mobile client’s context according to the new room
Outline

• Scenario: Intelligent Building
• System Components
 – DWARF overview
 – Configuration components
• Distributed Configuration
 – Description of concepts
 – Detailed example scenario
• Strategies for Using AR Toolkit as Wide Area Tracker
• Conclusion & Future Work
Distributed Configuration

• Basic Idea: distribute information processing
 – Video Grabber and Marker Detection on user’s mobile client
 – Marker Loaders and Coarse Trackers in rooms
• Environmental services run in multiple instances, one for each room
 – Room-dependent evaluation of Marker Detection events gets possible
 – Available more accurate tracking technology (i.e. ultra wideband tracker) can be integrated seamlessly
Distributed Configuration - Example

Mobile Client

VideoGrabber → MarkerDetection

Room 1

CoarseTracker

MarkerLoader

Room 2

CoarseTracker

MarkerLoader

Room 2 AR App
Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew
Distributed Configuration - Example

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew
Distributed Configuration - Example

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew

Room 1
- VideoGrabber
- MarkerDetection
- CoarseTracker
- MarkerLoader

Detect Room Change
- Send marker events

Room 2
- CoarseTracker
- MarkerLoader
- Room 2 AR App
Distributed Configuration - Example

Change Client’s Context to Room=Room2

Mobile Client
- VideoGrabber
- MarkerDetection

Send marker events

Room 1
- CoarseTracker
- MarkerLoader

Room 2
- CoarseTracker
- MarkerLoader

Room 2 AR App

Change Client’s Context to Room=Room2
Distributed Configuration - Example

Room 1
- CoarseTracker
- MarkerLoader

Room 2
- CoarseTracker
- MarkerLoader

Mobile Client
- VideoGrabber
- MarkerDetection

Send marker events
Distributed Configuration - Example

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew
Distributed Configuration - Example

Mobile Client

- VideoGrabber
- MarkerDetection

Room 1

- CoarseTracker
- MarkerLoader

Room 2

- CoarseTracker
- MarkerLoader
- Room 2 AR App

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew

16-Dec-03
Distributed Configuration - Example

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew

Room 1
- CoarseTracker
- MarkerLoader

Room 2
- CoarseTracker
- MarkerLoader
- Load Room 2 Context + App Markers
- Room 2 AR App
Distributed Configuration - Example

Mobile Client

- VideoGrabber
- MarkerDetection

Room 1

- CoarseTracker
- MarkerLoader

Room 2

- CoarseTracker
- MarkerLoader

Send marker events

Room 2 AR App

Configuration Strategies of an AR Toolkit-based Wide Area Tracker
Martin Wagner, Felix Loew

16-Dec-03
Outline

• Scenario: Intelligent Building
• System Components
 – DWARF overview
 – Configuration components
• Distributed Configuration
 – Description of concepts
 – Detailed example scenario
• Strategies for Using AR Toolkit as Wide Area Tracker
• Conclusion & Future Work
Strategies for Marker-Based Wide Area Tracking

Factors influencing the choice of strategies:

- Light conditions
- Movement of user
- Marker position
- Camera
- Room properties

Basic strategies:

- Minimum number of frames
- Weighting number of frames by confidence value
- Detect multiple markers simultaneously
- Detect sequence of markers
Outline

- Scenario: Intelligent Building
- System Components
 - DWARF overview
 - Configuration components
- Distributed Configuration
 - Description of concepts
 - Detailed example scenario
- Strategies for Using AR Toolkit as Wide Area Tracker
- Conclusion & Future Work
Conclusion & Future Work

• Prototypical implementation:
 – Proof of concept for configuration architecture
 – Demonstration within ARCHIE project

• Future Work:
 – Evaluate robustness of different strategies
 – Describe criteria for suitability of different strategies
 – Design combination strategies
 – Incorporate additional trackers/ information sources
 – Algorithms for detecting and reverting wrongly triggered context changes
Thank you!

See our website:

http://www.augmentedreality.de

Or send E-Mail:

dwarf@augmentedreality.de