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Abstract—Thanks to the advances in parallel processing hard-
ware, iterative algorithms for cone beam reconstruction are now
available with computation times acceptable for clinical use. At
the same time they are able to accomodate more accurately
the physical effects underlying the X-Ray imaging process.
Many parameters are involved, which need to be precisely
calibrated in order to achieve an accurate 3D reconstruction.
Unfortunately, some parameters might change individually for
every cone beam acquisition, stirring the need for an online
calibration technique. We present a method for automatically
deriving individual parameter adjustements within an iterative
reconstruction framework, without the need for a designated
calibration phantom. Preliminary results on a beads phantom
and anatomical sample show that self-calibration of global
and local geometric parameters is possible; besides we briefly
demonstrate radiometric calibration on phantom data.

Index Terms—cone-beam, computed tomography, reconstruc-
tion, OS-SIRT, calibration.

I. INTRODUCTION

Cone-beam reconstruction algorithms comprise an essential
technology in all 3D X-Ray based image modalities. Expen-
sive clinical computed tomography (CT) scanners nowadays
use 3D cone-beam rather than 2D fan-beam reconstruction
methods due to the trend to many-slice systems. Recent
advances in flat-panel detector technology also spawns small
cone-beam tomography systems with unprecedented image
quality. Those digital volume tomography (DVT) devices
are mainly used in ENT and dental applications, providing
excellent reconstructions within a small volume, for a price an
order of magnitude smaller than CT systems. This typically
low price tag however limits the mechanical accuracy of the
rotational movement as well as precise per-unit calibration
of all X-Ray source, detector, and geometric parameters. The
trend to powerful iterative reconstruction techniques, resulting
in a more complete modeling of X-Ray physics, also raises
the requirement of correctly estimating more, especially ra-
diometric, parameters. It is therefore desirable that the arising
unknowns be recovered automatically in the reconstruction
software, in particular since some of them might change during
every individual acquisition.
Offline calibration of cone-beam systems is a problem that has
been well understood and solved by every manufacturer, with
a variety of calibration phantoms and algorithms available.
Online computation of the individual projection parameters of
a cone-beam run has been developed as well. Such methods
either use additional sensors [1] or additional calibration

White Lion Technologies AG, Fürstenrieder Str. 275, 81377 München,
Germany. Corresponding author: Wolfgang Wein, E-mail: wein@wlt.ag.

markers that are placed around the patient [2]. Particularly
the latter is nowadays prohibitive, since for DVT applications
the reconstruction volume is fully covered by anatomy. Be-
sides, modern radiation safety laws prohibit irradiating any
body parts which are not used for image creation. An initial
approach for re-calibration without additional information is
shown in [3], using an optimization of global geometric
parameters by entropy minimization of the volume in a FDK
reconstruction.
In the following, we present our new method for automatically
deriving geometric and radiometric parameters, both globally
and for individual projections, within the reconstruction of
the object to be diagnosed itself. It is based on an efficient
simultaneous algebraic reconstruction, wherein the additional
parameters are optimized. As opposed to [3] it optimizes the
same criterion than the reconstruction itself and is generalized
over any unknown parameters of the imaging device.

II. METHODS

A. Reconstruction Framework
We have developed an efficient GPU implementation of an

ordered subset simultaneous iterative reconstruction technique
(OS-SIRT), similar to the one described in [4]. A subset of
all X-Ray projection images is forward- and back-projected
iteratively to yield the reconstructed volume. Let us introduce
some variables:
• V (k) reconstruction volume estimate in iteration k
• NV : number of voxels inside the reconstruction volume
• vj , j ∈ [1 . . . NV ]: an individual voxel
• NL: number of pixels in an X-Ray image
• xil, l ∈ {1 . . . NL}: a pixel of X-Ray image i
• ril: single forward projected ray
• Sk: Frame indices of the subset used in iteration k
• Pi: projection matrix of X-Ray image i
• wjl(Pi): ray projection weights for image i
• λ ∈ ]0 . . . 1]: relaxation factor

The forward projection operator is then written as

∀i ∈ Sk, l ∈ {1 . . . NL} : r
(k)
il =

NV∑
j=1

v
(k)
j wjl(Pi) (1)

The corresponding error back-propagation operator is

∀j ∈ [1 . . . NV ] : v
(k+1)
j = v

(k)
j + λ

∑
i∈Sk

NL∑
l=1

xil − r(k)il∑
wjl(Pi)

(2)

The ray projection weights wjl(Pi) in both equations 1 and 2
are computed on the fly by the GPU, as texture interpolation
weights along the rays.



B. Optimization Approach

In the framework described above, a single iteration k
essentially tries to minimize the re-projection error Ek of
subset Sk:

Ek =
∑
i∈Sk

NL∑
l=1

∣∣∣xil − r(k)il

∣∣∣ (3)

In the ideal case, where the forward projection operator
properly models the underlying X-Ray physics, this error
should converge to zero after sufficient iterations. The idea is
now to also minimize equation 3 with respect to all geometric
parameters contained in Pi that are in question:

P̂i = arg min
Pi

Ek (4)

On top of that, further radiometric parameters, e.g. consid-
ering polychromaticity or scattering, might be included. The
resulting list of parameters can unfortunately not be subject
for iterative refinement within the OS-SIRT reconstruction,
since successive iterations would create an inconsistent volume
estimate while the parameters are changing. Rather, we have
to create an outer optimization loop, repeatedly computing
equation 3 after a complete reconstruction (i.e., all subsets
have been used once). In this ‘self-calibration’ mode, we use
down-sampled copies of the X-Ray images, yielding smaller
values of NV and NL. Besides, if the subset size is large
enough (typically |Sk| ∈ [5 . . . 30] in our case), the value
of Ek can be computed from the difference images of the
last OS-SIRT subset execution. The problem then becomes
computationally feasible, due to the capabilities of modern
stream processing hardware.
Because of the iterative nature of the reconstruction itself, it is
not directly possible to compute derivatives of Ek with regard
to the parameters subject to optimization. For global geometric
and radiometric parameters, we therefore use the Amoeba
direct search method. Parameters which affect every individual
frame i, can be successively optimized. The reconstruction is
then repeated only after all projections have been adjusted.

C. Geometric Parameterization

For modeling the projection geometry we use a standard
pinhole camera model [5]. The corresponding projection ma-
trix Pi has dimensions 3 × 4 and can be decomposed into
intrinsic and extrinsic camera parameters:

Pi = K
[
Ri t

]
=

fx 0 cx
0 fy cy
0 0 1

 [R t
]

(5)

where K is the intrinsic calibration matrix containing the focal
lengths fx and fy in the respective axis directions and the
principal point (cx, cy)>. Ri and t represent the extrinsic
rotation and translation transforming the world coordinate
system into the camera coordinate system.

During optimization, however, we do not directly optimize
over this parametrization, but instead use a parametrization
more suited to the source-detector geometry. The intrinisc

calibration matrix can then be written as:

fx =
px
sx
d, fy =

py
sy
d (6)

cx =
px
2

+
hx
sx
px, cy =

py
2 + tan(α)d

sy
py (7)

Here, d is the source-detector distance in mm, sx and sy
is the size of the detector in mm and px and py are the
dimensions of the projection image in pixels. hx is the x-
offset of the detector center from the intersection point of the
X-ray source’s principal ray in mm. α is the angle at which
the detector is tilted with respect to the plane orthogonal to the
X-ray source’s principal ray (α ≈ 6◦ for dental applications,
in order to avoid attenuating the same X-rays with teeth or
implants on both sides).

The extrinsic camera parameters Ri and t are parameterized
as:

Ri =

− cos(γi) −sin(γi) 0
0 0 1

− sin(γi) cos(γi) 0

 , t =

kxky
kz

 (8)

where γi = R
NX−1 (oi + i) with NX the number of X-ray

projections acquired, R the angle covered by the source-
detector pair around the object and oi the offset to the expected
angle for frame i. This offset is necessary to accomodate slight
mechanical variations in the angle increment when the device
is moving. The vector (kx, ky, kz) is the offset of the detector-
source pair from the isocenter in mm. If kx or ky are non-
zero the detector-source pair is describing an eccentric motion
around the object instead of a circular one.
In this work, we chose to evaluate the optimization of oi as an
unknown parameter that is specific for every frame i. Please
note that further parameters from R and t can be selected as
frame-variant to achieve greater accuracy, depending on the
mechanical setup.

D. Radiometric Parameterization

We have adapted the forward- and back-projection operators
to incorporate a polychromatic X-Ray model, inspired by the
work in [6]. This model tries to reconstruct linear attenuation
cofficients at a selected energy, by approximately mapping
them to photo-electric and compton cross-sections and cal-
culating polychromatic line integrals. The modified forward
projection operator is:

∀i ∈ Sk, l ∈ {1 . . . NL} : r
(k)
il = − log

NE∑
e=1

be exp (. . .−Φe

NV∑
j=1

φ
(
v
(k)
j

)
wjl −Θe

NV∑
j=1

θ
(
v
(k)
j

)
wjl

 (9)

where φ and θ are the mapping from linear attenuation to
photo-electric and compton cross-sections, Φe and Θe the
corresponding energy dependencies at energy e, and NE
the number of used discrete energies. The effective spectral
contribution be is combined from:

be = sIeDe (10)



where s is an overall scaling factor, Ie the X-Ray source
spectrum and De the detector spectral sensitivity. be can be
parameterized depending on the unknown radiometric com-
ponents, and directly optimized by the framework presented
above.

III. RESULTS

A. System Setup

Our experimental setup consists of a medical X-Ray source
and flat panel detector mounted in steady position, with a
distance of X-Ray focal spot and detector center of about
55cm. The detector has a direct deposit CsI scintillator,
NL = 0.7 Mega pixel, and a pixel size of 0.1mm. A cheap
turntable which does not run very smoothly is moving the
object to be reconstructed. This allows us to investigate the
automatic computation of varying angular increments oi.
Our reconstruction algorithm computes one OS-SIRT run with
650 X-Ray projections and NV = 5123 voxels in ≈ 12
seconds, using an AMD Radeon 5870 GPU. In self-calibration
mode, a reconstruction completes in one second, with down-
scaled projections (NL = 170K pixels) and NV = 2563.
Depending on the number of open parameters, a full opti-
mization terminates within one to a few minutes. We obtain
similar computation times on a NVIDIA GeForce GTX 580
board.

B. Geometric Calibration on Ground Truth Phantom

In order to validate our self-calibration technique, we ac-
quired a sequence of a cylindrical phantom with eight steel
balls to compute the exact projection geometry. In a first step
we automatically extract the steel balls from the projection
images by using an isocontour-tracing algorithm with the
isovalue chosen as the mean between the background and the
steel ball intensities in the projection images. Subsequently
a circle was fitted to the extracted isocontours using a least-
squares minimization. The recovered center-points for each
sphere over the sequence together with the approximate 3D
position of the spheres are then used in a bundle adjustement
step [5] to optimize both the projection geometry parameters as
defined in section II-C and the position of the steel balls. The
starting point for the parameters is chosen quite roughly with
all parameters set to zero except the source-detector distance
which was set to 500 mm. After convergence we kept the
internal parameters K fixed, and optimized the angle offset
oi for each frame which describes the deviation from the
expected rotation angle of the device. Afterwards we repeated
these two optimization steps on the results. As expected, no
significant changes occured in the parameters after the first
run, indicating that the optimization successfully converged.
In total, the bundle adjustment step required 9 iterations and
resulted in an average reprojection error of 0.54 pixels. The
global and frame-specific parameters are henceforth used as
Ground Truth data. The reprojection error using the parameters
of the self-calibrating reconstruction is 1.68 pixels.

The first two columns of table I show the parameters
obtained using both the Ground Truth calibration, and our

proposed reconstruction-based optimization scheme. The re-
covered values are very similar except for the detector offset
in x-direction and the detector skew. However, it seems that
these two parameters are not totally orthogonal and therefore
tend to increase together. Figure 1 shows the results for the
angle offset oi computed using the Ground Truth and the self-
calibration method. As can be seen the shape of the curves
- in particular the local extrema - is almost identical. The
mean difference is 0.24, the maximum 0.79, and the standard
deviation 0.18, each expressed in terms of the regular frame
angular increment, which amounts to 0.55◦. There is only a
slight offset in the absolute value. This shows that the two
methods are comparable in terms of accuracy, when executed
on the same phantom image data.

Ground Truth Self-Cal. Self-Cal.
Phantom Jaw

Source-detector distance 546.7mm 549.9mm 543.4mm
Detector tilt 5.97◦ 5.92◦ 6.15◦

Detector offset x 12.9mm 1.31mm 3.62mm
Detector offset y 0.42mm 0.58mm 0.75mm
Detector shear 19.5mm 1.26mm 3.61mm

TABLE I
COMPARISON OF THE RESULTING PROJECTION GEOMETRY PARAMETERS

0 100 200 300 400 500 600 700
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

A
ng

le
 o

ffs
et

 (
in

 m
ul

tip
le

s 
of

 s
ta

nd
ar

d 
in

cr
em

en
t)

 

 

Ground Truth
Self−calibration

Fig. 1. Angle offset comparison between Ground Truth and self-calibration.

C. Geometric Calibration on Real Anatomy

An ex-vivo porcine jaw with dental implants was used as
anatomical test data set. To test the convergence of our self-
calibration, the source-detector distance was set to 500 mm,
all other values (last four rows in table I) to zero as initial
estimate. The self-calibrating reconstruction converged with
visually excellent image quality, the resulting parameters are
depicted in the last column of table I. Apart from the connected
detector scale & shear, the parameters agree quite well with
the Ground Truth phantom. Note that a deviation of source-
detector distance of 3.3 mm corresponds to a fan-beam angle
error of only ≈ 0.06◦. Figure 2 shows a reconstruction using
the initial and final parameters (in the latter, the individual
frame angles are optimized as well).
The angle increment optimization result on this data is shown
in figure 2(c), executed a second time after completing a
reconstruction with the updated angles. While the turntable
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Fig. 2. Sagittal slices from reconstruction and angle plot, illustrating geometry optimization on porcine jaw.

motion is not reproducible and can therefore not be compared
to figure 1, it shows the same characteristic extrema. The
second optimization causes slightly more pronounced peaks,
indicating that the system converges well.

D. Radiometric Calibration on QA Phantom
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Fig. 3. Polychromatic reconstruction on phantom evaluated against s

The optimization of the radiometric scaling parameter s
in equation 10 was evaluated on a Quart DVT AP quality
assurance (QA) phantom (Quart GmbH, Zorneding, Germany),
running the polychromatic reconstruction algorithm outlined
in section II-D. As can be seen in figure 3, the reprojection
error Ek has a clear minimum at s ≈ 0.9. The corresponding
reconstruction slice has sharper edges and constant intensity
across the bright ring, while a beam hardening effect is visible
on the reconstruction with s = 0.5.

IV. DISCUSSION

We have developed a method that allows for self-calibration
of global geometric, local per-frame, and radiometric parame-
ters on the individual scans of a cone-beam CT system, without
the need for additional calibration phantom acquisitions. It is
based on optimizing over the residual error of a rapid OS-
SIRT algorithm, a single execution of which takes one second
on recent GPU hardware.
We demonstrated the potential of this method by recovering
the global geometric parameters as well as individual angle
increments of a steel beads phantom and ex-vivo porcine
anatomy, comparing them against a numerical computation
based on the segmented bead locations. Last but not least,
we could successfully eliminate beam hardening artifacts by
optimizing an unknown parameter of a simplified spectral
model.
The main limitation of our method stems from the fact that

it is essentially a local optimization whose results depend
to some extent on the underlying image data. Future work
comprises to systematically evaluate the optimal parameteri-
zation, parameter dependencies, optimization capture range, as
well as the influence of significantly different anatomy being
imaged. So far our studies revealed that slow variations of
calibration parameters which would typically occur in practice,
can reliably be recovered.
Even though it is subject to continued development, we believe
this method will eventually push the limit regarding image
quality on affordable CT devices with mechanical imperfec-
tions. It could also enable new devices to recover physical
parameters like X-ray source spectra and detector spectral
sensitivity right in the software, which are otherwise difficult
to obtain. This in turn can yield advances in the field of
quantitative CT for small devices. A clinical 3D reconstruction
today is available in the matter of seconds for presentation
to the doctors, using valid calibration parameters. Future
systems could use the idle time between scans, or overnight
downtime, to review the consistency of, and iteratively re-
calibrate, all prior clinical scans. Slowly changing parameters
caused by mechanical wear, burn-in of the X-Ray tube, or
changing detector properties, can therefore be automatically
updated. This could make regular maintenance and calibration
of such systems a thing of the past, further cutting on cost-of-
ownership.
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