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Abstract—Mosaicing is a commonly used technique in many
medical imaging applications where subimages are stitched
together in order to obtain a larger field of view. However,
stitching, which involves alignment or registration in overlapping
regions, is often challenging when the information shared by
subimages is absent or small. While it is not possible to per-
form an alignment without overlap using existing techniques,
imaging artifacts such as distortions towards image boundaries
present further complications during registration by decreasing
the reliability of available information. Without taking these
into consideration, a registration approach might violate the
continuity and the smoothness of structures across subimages.
In this paper, we propose a novel registration approach for the
stitching of subimages in such challenging scenarios. By using
a perceptual grouping approach, we extend subimages beyond
their boundaries by propagating available structures in order to
obtain structural maps in the extended regions. These maps are
then used to establish correspondences between subimages when
the shared information is absent, small or unreliable. Using our
approach ensures the continuity and the smoothness of structures
across subimage boundaries. Furthermore, since only structures
are used, the proposed method can also be used for the stitching
of multi-modal images. Our approach is unique in that it also
enables contactless stitching. We demonstrate the effectiveness
of the proposed method by performing several experiments on
synthetic and medical images. Moreover, we show how stitching
is possible in the presence of a physical gap between subimages.

Index Terms—Image Registration, Stitching, Structure Propa-
gation, Tensor Voting.

I. INTRODUCTION

IMAGE mosaicing is the process of stitching two or more
images together in order to obtain an extended field of

view (FOV). It has many application areas ranging from
computational photography, to computer vision, to medical
imaging. Especially in the field of medical imaging, there
has been an increasing interest in having larger FOV images.
3D histology reconstruction [1]–[4], extended FOV micro-
scopic [5]–[9], laparoscopic [10] or endoscopic [11]–[13]
images, 3D ultrasound mosaicing [14], [15], and whole-body
MRI [16], [17] are examplary applications where an extended
view is created by stitching subimages or subvolumes. Having
a large FOV is especially important in microscopic images
since it for example enables studying several questions that
arise in neuroscience [8]. A mosaicing is often needed since
most of the existing microscopes have a limited view either
in lateral (e.g. confocal, multi-photon) or axial (e.g. histology)
dimensions.
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The main step of mosaicing is the stitching of subimages
by estimating transformations that will bring them into a
spatial alignment which is usually done by using an image
registration algorithm. Classical image registration techniques
usually assume minor differences in the viewpoints of images
to be registered. However, this is not the case in microscopic
imaging such as confocal microscopy where a large FOV
is obtained by combining subimages [8] or in 3D digital
pathology where single histology slices are stacked along
the axial direction to create a 3D histology volume [3], [4].
Therefore, there are specific challenges of creating wide field
of view images/volumes in these cases. Special registration
techniques are needed which can handle 1) very small or
distorted overlap between subimages or subvolumes1 (as in
the confocal microscopy case), 2) adjacent images having
no overlap at all (maybe just touching each other as in 3D
histology case).

In the conventional stitching, the amount of overlap be-
tween subimages to be stitched is important for finding cor-
respondences for the estimation of necessary transformation
parameters through image registration. Usually, a predefined
value for the amount of overlap is used to decide whether a
stitching between two subimages is feasible [2], [8], [18], [19].
Besides not being able to extract landmarks (if a landmark-
based registration is used) or intensity correspondences, the
“continuity and smoothness of structures” across subimages
cannot be guaranteed unless a sufficient amount of overlap is
present. These are the properties which are essential especially
in microscopic imaging since the subsequent measurements on
the structures will be influenced by the stitching performance.

To motivate the problem, let us assume that one of the
initially aligned subimages in Figure 1, which are simply two
pieces obtained by cutting a whole image into two, undergoes
some misalignments such as translational or rotational trans-
formations. It is very challenging to bring these two pieces into
spatial alignment again even in the case of a simple transla-
tional misalignment without having an overlapping region. The
problem becomes much more challenging and complicated to
solve when there is also a physical gap between the pieces,
in other words, when there is an occluded region between the
pieces as illustrated in the last column of Figure 1.

Since an overlap cannot always be guaranteed, there have
been approaches in the literature to address the overlap depen-
dence. One approach is, assuming that there is a shared border
between subimages, to perform contour matching after extract-
ing contours at the image boundaries [20], [21]. Although this
approach works on puzzle solving tasks, it fails when applied
on medical images where boundaries usually have low signal

1Terms “image” (2D) and “volume” (3D) will be used interchangeably
throughout this paper.
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Fig. 1. A simple illustration of the possible challenging scenarios. Initially
aligned subimage pairs on the left can be misaligned by translational or
rotational transformations applied to one of the subimages. In this case, it
is very difficult to restore the applied transformations without having an
overlapping region to be used as a base for the alignment. It is much more
challenging when there is an occluded region between the subimages.

or distortions. Another approach, which is often used for 3D
histology reconstruction, is the use of slices at subvolume
boundaries. Using boundary slices directly as in [2], [22] may
lead to an incorrect reconstruction due to possible distortions
in boundary slices [1]. Based on this observation, Bagci et
al. [3] proposed to select “best reference slices” from each
subvolume, which are then used for aligning subvolumes.
Knowing that there may be large variations between even the
neighboring histology slices, reference slices from subvolumes
might be quite different from each other leading to possible
misalignments.

All of the above mentioned techniques rely on the informa-
tion contained either at the boundary or in a specific slice of
a subvolume. However, structures in medical data often have
certain morphological smoothness and continuity properties
which can be exploited to ensure that a final stitching is con-
sistent with respect to the global continuity of structures across
boundaries. Following this idea, Lee & Bajcsy [1] proposed a
feature-based approach for the volumetric reconstruction from
the confocal laser scanning microscopic subvolumes. Feature
trajectories extracted from vessel centerlines in subvolumes
are used for fitting polynomial curves that are fused with a
corresponding trajectory in a neighboring subvolume. How-
ever, they look for an affine transformation only in the lateral
plane ignoring transformations in the stitching direction. Their
method heavily depends on the extraction of centerlines via
segmentation. Moreover, it is usually hard to find feature
correspondences and segmentation is often an error prone task.

Based on these observations, we believe that there is still
no promising solution to the problem of registering/stitching
images/volumes in the absence of sufficient overlap. Ensur-
ing morphological continuity of structures has remained a
challenging task in various applications in medical imaging
including digital pathology and wide-field microscopy. There-
fore, in this work, we aim at proposing novel registration
techniques addressing this challenging issue.

The main difference between our approach and the other
existing solutions for the stitching of subimages is that a
sufficient overlap region is not assumed to be readily available
in the beginning. It is enough for our method if the subimages

are “sufficiently close” to each other. Furthermore, we assume
that their relative positions are roughly known. That is to say,
we know the adjacency relationship between the subimages in
advance. These kind of challenges in medical image mosaicing
such as the initial positioning of images by identifying adja-
cency relationships or error accumulations during mosaicing
have been addressed in several recent works [7]–[9], [23],
[24]. Therefore, in this work, we will focus on developing
strategies for the registration of subimages having limited
or no overlap while ensuring the global continuity and the
smoothness of structures crossing their boundaries. It should
be noted that, for a successful registration, it is important that
image structures have inherent continuity, which is a property
of the most natural images.

We are inspired mostly by the ability of the human visual
system to perceive the “good continuity” of structures by
integrating information from pieces. It has been reported in
the literature that the human visual system can construct
the whole from the pieces by integrating the continuity in-
formation of apparent contours within each piece, i.e. by
perceptually grouping them [25] based on the Gestalt law of
good continuation. Recently, there has been extensive research
in computer vision to understand and model the perceptual
grouping mechanism of the human visual system [25]–[28].

Several methods for modeling the perceptual grouping has
been developed for curve and surface inference in computer
vision [29]–[33]. Among these methods, “tensor voting” [32]
has been applied for curve and surface inference in several
applications [34]–[38]. It has been also used to solve many
other computer vision problems such as image repairing [39],
color correction [40] and terrain extraction [36]. More inter-
estingly, several recent works in the field of medical imaging
have successfully used the tensor voting in applications such
as gap filling for vascular structures [41], catheter detection
in fluoroscopic images [35] and detection of curvilinear struc-
tures in microscopic images [38].

In this work, we propose a novel technique which uses
tensor voting for the inference of structures beyond image
boundaries in order to establish a region shared by the
subimages to be stitched as demonstrated in Figure2(a). To
this end, we create structure maps by propagating salient
structures from image regions into non-image regions. Then,
these structure maps are used for the subsequent stitching of
subimages. Finally, resulting transformations are transferred to
the original subimages for the optimal alignment with respect
to the global smoothness and continuity of structures across
subimage boundaries. So far, we are not aware of the use of
a conceptual grouping technique for the mosaicing of medical
images.

There are several advantages of using such an approach;
• First of all, in the absence of an overlap region, these

structure maps will serve as a basis for the estimation
of necessary transformation that brings subimages into a
spatial alignment.

• Secondly, if an existing overlap region is small or has
severe geometrical distortions or deformations arising
from slide preparations etc., then, this region can be
supported by structural maps created by extrapolating the
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Fig. 2. (a) Overview of the proposed four-step stitching method using structure propagation. Here, we use a simple example where two pieces of a partial
ellipse are to be stitched together. In Step I, the edge images, Ei are obtained by extracting structures , i.e. the edges, from the input images, Ii. This is
followed by the propagation of structures into a predefined region Ωie for Ei in Step II. We create structure images denoted by Si in Ωo, which is constructed
by combining the extended, Ωie, and the overlapped, Ωio, regions of the edge image Ei in Step III. Finally, these newly created images are registered to
each other followed by the application of resulting transformations to the original images, Ii in Step IV. (b) The same technique can be directly applied to
the stitching of images having a physical gap (see missing part in I2). The proposed technique is capable of aligning image even in this case thanks to the
fact that the structures are extrapolated by making sure that the global continuity of structures is not violated.

structures that are salient or that present with no or less
distortion into this region.

• Finally, an image stitched together from subimages using
structure maps will have smooth connections between the
corresponding structures of subimages.

Once structure maps are created, then, they can be registered
to each other in order to find the necessary transformation.
Transformations can be linear or non-linear depending on the
needs of applications. Here, we will only consider linear cases
for which we employ a registration method based on Markov
Random Fields (MRF) as proposed in [42].

The organization of this paper is as follows. In Section II
we explain our method where we give a brief theory of tensor
voting in Section II-B and describe how it is used for structure
propagation in Section II-C. Alignment of the propagated
structures is discussed in Section II-D. Experimental results
demonstrating the performance and the effectiveness of the
proposed method on synthetic and real medical images are
presented in Section III. Sections IV and V conclude the paper
after some discussions.

II. METHOD

The main idea behind our approach is the extension of
subimages in order to allow a stitching based on an artificial
overlap created in the extended regions. The extension is
in terms of image structures such as strong edges in the
subimages. The structures are extrapolated beyond subimage
boundaries. By posing this as an inference problem, we

employ tensor voting method to infer structures beyond image
boundaries based on the orientation and saliency properties of
structures within subimage regions. Inferred structures are then
used in estimating transformations at different scales for the
optimal alignment between subimages.

In this section, we first give an overview of our approach
followed by a background on tensor voting and then we
explain how structures are propagated using tensor voting.
The employed stitching strategy is discussed at the end of
this section.

A. Overview

Let I1 : Ω1 ⊂ R
N → R and I2 : Ω2 ⊂ R

N → R be
two images to be stitched together. In this paper, we use
the strong edges as structural information to be propagated.
Therefore, we further define E1 = ζ(I2) : Ω1 ⊂ R

N → R and
E2 = ζ(I2) : Ω2 ⊂ R

N → R as the structural representations
where ζ(·) is an edge operator. Edges can be detected by using
an efficient implementation of edge detection with recursive
filtering [43]2.

In order to do a stitching between two subimages, one has
to have a rough initial idea about their positions relative to
each other. This prior information can be obtained in several
ways such as using a step motor in microscopic imaging or
using other existing methods as mentioned in Section I. In this
work, we will assume that such prior information is available.

2Implementation available from ftp://ftp-sop.inria.fr/epidaure/Softs/
Malandain/
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(a) A voting scenario. (b) Before token refinement. (c) After token refinement.
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(d) Tensor communication.

Fig. 3. (a) A voting scenario in 2D from a voter at p to a votee at q along an hypothesized curve s. A weighting function (color) determines the strength of
a vote based on the distance between the voter and the votee. Here only a vote for a 1-structure, i.e. curve, which has information regarding only its normal
space, N1, is sent. (b)-(c) A simple illustration of the token refinement using a set of unorganized input tokens. Green dots represent the token positions while
sticks stand for the eigenvectors of associated tensors. (b) Tokens are assigned ball tensors initially. They have no preferred orientations. (c) After a refinement
step, they agreed on a certain orientation by exchanging information with each other in a local neighborhood. Note how tokens lying on a (possible) structure
have similar orientation preferences. (d) An illustration of communication between ball tensors. Note how the normal space of a voter (dashed vectors) is
oriented for each votee and how different accumulated tensor votes depend on the location of votees. Votee 1 received more stick votes in a certain orientation
than votee 2 since it is more aligned with the voters than votee 2.

In other words, we will assume that we know the adjacency
relationship between the subimages. Furthermore, without loss
of generality, we will assume that two subimages to be stitched
together are touching each other as illustrated in Figure 2(a).
Other cases where there is a gap between subimages will be
discussed later. Note that the goal here is to find the necessary
transformation parameters that will bring these two subimages
into spatial alignment such that the structures in the subimages
are smooth and continuous across the boundary between them.

To this end, we define regions Ω1e and Ω2e corresponding
to the extensions of image regions Ω1 and Ω2, respectively. A
scalar structure saliency map in the extended region Ωie will
be created using tensor voting from the structures present in
the edge image Ei. Ωie is now assumed to be overlapping with
a small, if not entire, portion of region of the other subimage,
Ωj (j 6= i and i, j ∈ {1, 2}). This region of overlap will be
denoted by Ωjo, i.e. the overlapping portion of Ωj . Further we
define

Ωo = Ωio ∪ Ωie, i ∈ {1, 2} (1)

which is simply the union of the overlapped and extended
regions for the edge image Ei. We denote the corresponding
images with Si : Ωo ⊂ R

N → R, i.e. the structure images
that are constructed by combining the extended, Ωie, and
the overlapped, Ωio, regions of the edge image Ei. This is
illustrated graphically in Figure 2(a). In this way, we create
an overlap region between subimages by means of a two-sided
structure propagation. For the optimization of transformation
parameters to align the original images I1 and I2, only
the information present in the established overlap region Ωo

will be used. Finally, the stitched image will be denoted by
Is : Ωs ⊂ R

N → R where Ωs is the union of the domains of
two subimages as shown in the fourth step of Figure 2(a).

B. Tensor Voting

The Tensor Voting is a conceptual grouping method de-
signed for the inference of salient structures from a set of
incoherent input points [44], [45]. Inference is based on a

communication scheme where every point, voter, casts its
information encoded as a second order symmetric tensor, T,
to other points, votee, over a hypothesized smooth curve with
a low total curvature. The strength of the vote cast depends
on the voter’s perceptual saliency, the voter-to-votee distance
and the curvature of the assumed curve connecting them.
In the following two subsections, an overview of structure
representation and tensor communication will be given. For
more details about the tensor voting, we refer the reader to
[36].

1) Structure Representation: Every structure type is iden-
tified by the dimensionality d of its normal space Nd and
its associated saliency sd [36]. For instance, in 2D a point
has a ball-shaped tensor (d = 2, i.e. the normal space has
the dimensionality of 2), whereas a curve has a stick-shaped
tensor (d = 1, i.e. the normal space has the dimensionality
of 1) where the dominant component represents the normal
direction. The strength of a d-structure is related to the
magnitude of its saliency sd.

A tensor is represented as T =
∑N

d=1 λdêdê
T
d and can be

decomposed as

T =

N−1
∑

d=1

(λd − λd+1)

d
∑

k=1

êkê
T
k + λN

N
∑

k=1

êkê
T
k . (2)

It can be further written in terms of normal spaces as

T =

N
∑

d=1

sdNd with sd =

{

λd − λd+1 , d < N

λN , d = N
(3)

where λ1 ≥ . . . ≥ λN ≥ 0 and ê1 . . . êN are eigenvalues
and eigenvectors of T, respectively, sd is the saliency, Nd =
∑d

k=1 êkê
T
k is the d-dimensional normal space, and N is the

dimensionality of the input space. This representation can be
interpreted as the decomposition of the information to different
structure types. Every possible structure type has a normal
space and an associated saliency.
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2) Tensor Communication: For each possible structure, a
vote is sent by the voter, which are accumulated at the votee.
The transferred information per d-structure is simply a vote
tensor, Ad, weighted by its saliency, sd. A tensor vote cast by
a voter, p, to a votee, q, denoted by Ap(q), can be written
as the sum of vote components for every d-structure as

Ap(q) =

N
∑

d=1

spdA
p

d (q) (4)

where spd is the saliency of the d-structure type at p and A
p

d (q)
is the vote component for d-structure at p. Here, the voter
simply sends a vote component for each d-structure weighted
by its saliency. If the voter contains only a single structure
type, then, only its saliency will be non-zero and only that
information will have an influence at the votee.

A vote component for a d-structure is defined as

A
p

d (q) =

d
∑

j=1

S
p

d,j(q) with S
p

d,j(q) = w(r, θ)v̂c,j v̂
T
c,j

(5)
where S

p

d,j(q) is a stick voting field for each basis vector
of Np

d . In plain words, a vote component for a certain d-
structure is composed of contributions from the basis vectors
of its normal space.

To give an intuition, if there is only a curve, then, there is
only a 1-structure having N1, i.e. only a normal vector. Then,
Ap(q), i.e. the information cast by the voter, is

Ap(q) = sp1A
p

1 (q) with A
p

1 (q) = S
p

1,1(q) (6)

where s1 is just 1. This means only one stick voting field
for a single basis vector, i.e. the normal vector, was used.
If there would be only a 2-structure type, then, the vote
component for this structure will be the sum of stick voting
fields for each basis vector of the normal space N2. The idea
is straightforward, for each structure type, if the saliency is
non-zero, then, we create a vote component by adding stick
voting fields for each basis vector of the normal space. Now,
we explain what a stick voting field means.

The stick voting field for the jth basis vector, v̂n,j , of Nd is
the product of a weighting term w(r, θ) with the outer product
of the implied vector

v̂c,j = v̂n,jcos(2θ)− v̂t,jsin(2θ) (7)

where v̂t,j is a vector in the associated tangent space and θ
is the vote angle defined as the angle between v̂t,j and the
voter-to-votee vector, v̂, see Figure 3(a) for an illustration.
The implied vector is simply the vector that we would obtain
if the normal vector, v̂n,j , is slided on an assumed arc as
shown in Figure 3(a). The derivation of Equation 7 from the
figure is straightforward. This simply gives the normal at q

if there would be an arc connecting p and q. Since a low
total curvature of the assumed curve connecting the points
is desired [44], the magnitude of the implied vector on arcs
having larger curvature should be punished. Furthermore, the
requirement that the strength of the vote should decrease as
the distance between the points increases justifies the usage of

a weighting term based on the curvature of the assumed curve
and the distance between the points.

The weighting term w(r, θ) essentially controls the strength
of a vote depending on the angle, θ, and the distance between
the points, r = ‖p− q‖. This is done by setting

w(r, θ) = e−( s
2+cκ

2

σ2 ) (8)

s = rθ/ sin(θ) (9)

κ = 2 sin(θ)/r (10)

as proposed in [32] where s is the arc-length, κ is the curvature
of the curve, σ is the scale parameter controlling the voting
distance and c is a parameter that can be tuned to change the
compactness of the voting field. w(r, θ), as shown in color
in Figure 3(a), is simply a scaling function for the implied
vectors. The strength of the stick vote is larger if the curvature
is zero and if the voter-to-votee distance is minimal.

Votes cast by a set of voters, P , to a certain votee at q are
accumulated in the following way

T(q) =
∑

p∈P

Ap(q). (11)

Then, a subsequent decomposition is applied to T(q) as
described in Equations 2-3 to extract the saliences of different
structure types.

C. Structure Propagation

In this section, we explain how the structures are propagated
into the extended regions. The propagation is based on the
orientation preferences of voters (see Section II-B). The voters
in our case are basically the pixels/voxels on the structures to
be propagated. Therefore, since the structures do not explicitly
have their orientation preferences, we have to determine them
before performing a propagation. A nice feature of tensor
voting is that; given an unorganized set of tokens, one can
obtain orientation preferences for each token. This is possible
thanks to the mutual agreement of tokens on a preferred
orientation via local communication. This process is explained
further in the following section.

1) Token Refinement : We define a set of tokens, i.e. edge
pixels, Pi ∈ Ωi, for each edge image, Ei. Assuming that these
tokens do not have any preferred orientation in the beginning,
each of them is assigned a unit ball tensor as illustrated in
Figure 3(b). Making this assumption helps eliminating the
dependence on the orientations and edges as detected by the
edge detector. Finally, tokens refine their information regarding
their preferred direction of orientations by casting tensor votes
to each other.

For instance, in 2D, without any preferred orientations, a
voter will always vote in the favor of lines, i.e. stick votes,
passing through a certain votee and itself. This practically
means that the stick voting field in Figure 3(a) is always
aligned with the voter-to-votee vector v̂. This is possible due
to the fact that the basis vectors of the normal space of a unit
ball tensor can always be chosen such that one of the basis
vectors is along v̂ and others are orthogonal to it. At the end
of this procedure, each token accumulates votes coming from
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Fig. 4. An illustration of the stitching approach an a synthetic image
pair. Only the structure images are shown here. Structures in one of the
subimages are propagated towards the other one. Then, the subimages in
the established overlaping region are used for estimating the necessary
transformation parameters. Finally, resulting parameters are applied to the
original images yielding a smooth and continuous stitching of structures at
the stitching boundary.

other tokens in its neighborhood into a tensor which is then
decomposed according to Equation 3. Those tokens which are
close to each other or lie on a structure mutually agree on
a preferred orientation and have higher saliences for a certain
structure type as illustrated in Figures 3(c) and 3(d). In our 2D
example, if a votee receives more line votes from voters along
a certain orientation, then, after decomposition, this will be its
preferred orientation, which is an indication of the presence of
a line passing through this token with an associated saliency.
At the end of this step, edge pixels will be assigned tensors
encoding possible structure types and their saliences.

2) Structure Propagation: Having assigned tensors to edge
pixels, i.e. tokens, encoding structure types and their associated
saliences, every token can now propagate its information via
tensor voting. In other words, based on their self informa-
tion about the underlying structures, tokens vote for possible
structures in other regions. We use this for the inference of
structures in the extended regions, Ωie. Practically, each token
in Ωi sends a vote to every pixel in Ωie.

A dense voting is performed by

T(qi) =
∑

pi∈Pi

Api(qi), i ∈ {1, 2} ,pi ∈ Ωi,qi ∈ Ωie.

(12)
where every pixel position qi in the extended region Ωie

is considered as a votee. Once dense voting is finished,
scalar structural (i.e. curve) saliences are extracted from the
accumulated tensors as follows

Si(qi) = λ1(qi)− λ2(qi) i ∈ {1, 2} ,qi ∈ Ωie (13)

where λ1(qi) and λ2(qi) are calculated using the eigendecom-
position of T(qi) according to Equations 2 and 3. Note that
only these extracted scalar saliences are used in the following
steps including registration.

Next, we create the structure images Si by setting intensity
values from the overlapping region Ωo = Ωio ∪ Ωie. This is
done simply by cropping the portion of the extended edge
image Ei falling in Ωo as shown in Figure 2(a). Now, we

(a) (b) (c) (d) (e)

Fig. 5. Demonstration of image stitching without overlap. A synthetic image
of “M” letter is cut into two and the lower piece is translated, scaled or
rotated which is then restored using the proposed approach. In the first row,
the initial stitchings before the alignment is shown. The gray horizontal line
delineates the boundary between the pieces. In the second row, the final
stitching is overlayed onto the initial one where the red and green colors show
the lower piece of the letter before and after the alignment, respectively. In (a)-
(b), translations in horizontal and vertical directions, respectively, are applied
to the lower piece which are then successfully restored using the proposed
stitching method. Note the physical gap in (a) created by applying a vertical
translation. (c) demonstrates the ability to restore a change in scaling. In (d)-
(e), a small and a relatively large rotation applied is recovered. Again, there
is a gap as a result of the applied rotation which makes the stitching much
more challenging than the case where there is no gap between the pieces to
be stitched together.

have a pair of completely overlapping structure images, S1

and S2. The observed structures in S1 corresponds to the
estimated structures in S2, and vice versa. Alternatively, one
could also obtain a saliency map for the observed structures if
the observed structures are too noisy or distorted. Here, for the
sake of simplicity, we will assume that our observed structures
are free of noise. However, in the experiments, we will show
that the proposed method is already robust against noise.

In order to make sure that structures at different scales are
treated appropriately, we employ a multiscale approach for
both structure propagation and registration.

D. Stitching

In order to have a wide field of view, subimages have to be
stitched together in a consistent way. This consistency is usu-
ally ensured by allowing an overlap region between subimages,
which is then used for estimating the transformation parame-
ters that will bring the subimages into a consistent alignment.
In this work, we claim that for a successful alignment of
subimages such an overlap does not need to be secured during
acquisition. In the previous sections, we have demonstrated
how such an overlap can be established in the absence of
an existing one. In order to achieve a consistent alignment,
a registration method is needed to recover the transformation
parameters using the information in the established overlap
region. We have turned the problem of stitching two non-
overlapping images into the problem of registering two newly
created images S1 and S2. Transformations obtained from the
successful registration of these images can be transferred to
the original images I1 and I2. See Figure 4 for an illustration.

Registration of S1 and S2, which are assumed to be the
source and the target images respectively, is posed as an
optimization problem such that an optimal transformation T
optimizes an energy E . Transformation T is parametrized in
terms of a set of n parameters p = p1, · · · , pn. Optimal
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transformation parameters p̂ can be estimated via the following
equation

p̂ = argmin
p

E(p). (14)

where E is defined in terms of a similarity measure as

E(p) = ξ(S1 ◦ Tp, S2) (15)

with Tp being the parametrization of T by p.
Misalignment between subimages can be global, which can

be corrected by using an affine registration, but it can also be
local where a non-rigid or deformable registration method is
needed. In this work, we consider and address only the global
misalignments. We employ a recently proposed intensity-based
affine registration method [42] which is based on a discrete
Markov Random Field (MRF) formulation. For the details
about the used affine registration and discrete optimization
methods, we refer the reader to [42], [46], [47].

Registration is performed in a multi-resolution setting to
avoid local minima, where the optimal transformation is com-
municated between levels. Note that both structure propagation
and stitching take place in a multi-resolution setting. Such an
approach during structure propagation ensures that structures
present at larger scales are considered first for the optimization
whereas structures at a smaller scale are used for refining the
transformation parameters. Although not implemented here,
alternatively, one could also combine different scales of struc-
ture propagation and registration to make use of larger scale
propagations also in finer scale registrations for regularization
purposes.

In this work, after experimenting with several standard
similarity measures for intensity based image registration,
we ended up using the normalized cross-correlation (NCC)
measure as the similarity measure ξ(·, ·) in Equation 15.

The implementation was done in C++. We integrated the
tensor voting framework formulated in [36] with its imple-
mentation as a part of VXL3 library into the discrete MRF
based image registration framework [42], [48].

III. EXPERIMENTS AND RESULTS

To evaluate the proposed technique, several experiments
have been conducted on synthetic and real medical images.
Synthetic images were used to demonstrate the capabilities
of the proposed approach especially in cases, where not
only there is no overlap but also there is a physical gap
between the subimages to be stitched together as well as in
cases where the images to be stitched are noisy. In order to
evaluate the performance of the stitching of subimages in such
cases without violating the smoothness and the continuity of
structures across subimage borders, we have created several
synthetic image pairs. In Section III-A, we show and interpret
the results of synthetic experiments.

The proposed method has also been applied to the stitching
of real medical images. To do this, we have extracted 2D slices
from a two-photon microscopic image data set acquired from
a rat brain. Again, as in the synthetic experiment case, slices
were cut into two and several transformations constructed

3VXL library is available for download at http://vxl.sourceforge.net/.

in the same way were applied to one of the subimages.
Furthermore, four microscopic image pairs with overlapping
subimages to be stitched are used without applying any initial
transformations. These experiments were important in that
they showed the feasibility of the proposed method for being
used for the stitching of real medical images.

For the evaluation of results, in addition to the visual
assessment, we have compared the stitched images to the
ground truth data using a correlation method. Furthermore,
we evaluated the performance of the method in recovering the
applied individual transformation parameters. Applied trans-
formations are designed by varying one of the parameters at
a time in a predefined range while keeping the others fixed
to their initial values. In this way, we assess the sensitivity of
our method to the variations in transformation parameters. In
an ideal recovery of the transformation parameters, the sum
of the applied and the recovered translational or rotational
parameters should add up to zero. For the scaling parameters,
the multiplication of the applied and the recovered parameter
values should be equal to one. Shearing angle was not tested
individually as it makes no difference without a non-identity
scaling. Moreover, since a variation in a single parameter
can also be compensated by variation in other parameters
during optimization, we have also evaluated the recovery error
for transformation matrices as a whole where all parameters
(including shearing) have non-trivial values.

As an additional quantitative evaluation of the proposed
method, we have developed a continuity index called structure
continuity index (SCI), which is designed to evaluate the
smoothness of structures across stitched subimages. We com-
pute SCI again using tensor voting where structures extracted
from one side of the stitching boundary after the alignment
vote for the possible locations of structures on the other side.
The real structures are then correlated with the estimated ones
via tensor voting using the same notation in Section II. SCI
can be formulated as

SCI =
∑

i,j∈{1,2}
i6=j

∑

p∈Pio

Si(p)Sj(p)

|Pio|
(16)

where Pio ⊂ Pi is the set of structure points in Ωio. Note
that this measure is in fact a cross correlation where only
the detected structure points are used in the computation. This
measure can also be used as a cost function during registration.
Here, we use it only for evaluation in order to have an objective
testing.

The robustness of the proposed approach against noise
was also tested where varying degrees of white noise was
added to a pair of synthetic images before applying any initial
transformation. The noise added ranges between 0%-50% of
image intensities.

There are several parameters to be set both for the tensor
voting and the registration method. First of all, the size of the
overlaping region Ωoi to be established on each subimage in
the stitching direction was set to be 20mm. This was consid-
ered to be sufficient for performing a registration. This can also
be fine tuned depending on the image data. If the images to be
stitched are well structured, then, a smaller value is also fine.
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Fig. 6. Parameter recovery and ground truth correlation experiments. Several transformations, which differ from the identity only by the variation of one of
the parameters in p, have been applied to the lower piece of the letter image shown in Figure 5. In each case, only one of the parameters changed its value
in specific interval which was chosen to be ±10 for translations (mm) and rotations (degrees) and 1± 0.20 for scalings. 21 equally spaced values for each
parameter were sampled from the given interval. In each case, the error between the applied and the recovered transformation parameter was computed for
(a) translation and rotation and (b) scaling. (c)-(d) Correlations of the aligned subimage with the ground truth subimage for (c) translation and rotation and
(d) scaling.

In turn, a value of 40 was used for the scale parameter σ in
Equation 8. This value guaranteed that a structure point 20mm
inside a subimage can also vote for an image point 20mm
inside of the other image although the influence decreases
by the increasing distance. Also for the registration method,
there are some parameters to be set. For defining the search
interval for the affine transformation parameters, we set the
search range to ±40mm for the translational and rotational
components and to 1± 0.20 for the scaling components. The
size of the discrete label space for each parameter is set to
be 7 which is refined by a factor of 0.6 as suggested in [42]
in every pyramid level. For all experiments, a PC equipped
with Intel R© Core

TM
i7 2820QM, 230 GHz and 12GB RAM

was used. It took about 2s to stitch an image of size 512x512
pixels with 1.6x1.6mm pixel size.

A. Synthetic Images

Synthetic experiments were conducted to demonstrate the
capabilities of the proposed method for the stitching of subim-
ages without overlap in different scenarios. In order to make
sure that the method successfully copes with the lack of
overlap region, we simply cut a full image into two pieces and
created simple scenarios by applying affine transformations
to one of the pieces. Given a full 2D image with smooth
structures, it was cut into two subimages I1 and I2, which
are stitched again to obtain the original image I . Note that by
simply dividing into two, we do not allow any overlap between
the subimages. This is important because this is exactly the
problem which we are trying to address in this work.

In Figure 5, we demonstrate how a stitching can be done
in different scenarios. A synthetic image of “M” letter of
size 102x124 pixels with 1mmx1mm pixel size was divided
into two and the lower piece was translated, scaled or rotated
which was then restored using the proposed approach. In the
first row, the initial stitching before the alignment is shown.
The gray horizontal line stands for the boundary between the
subimages. In the second row, the final stitching is overlayed
onto the initial one, where the red and green colors show
the lower piece of the letter before and after the alignment,
respectively. In Figure 5(a)-(b) translations in horizontal and
vertical directions, respectively, are applied to the lower piece

which is successfully restored using the proposed stitching
method. Note the physical gap in Figure 5(a) which is a result
of the applied vertical translation. Figure 5(c) demonstrates
the ability to restore a change in scaling. In Figure 5(d)-(e), a
small and a relatively large rotation, respectively, are applied
and recovered. Again, there is a gap as a result of the applied
rotation which makes the stitching much more challenging
than the case where there is no gap between the pieces to
be stitched together. In all cases, it is visually obvious that a
stitching is possible in different scenarios, where the common
issue is the lack of image overlap.

For the quantitative evaluation of the proposed method,
several transformations, in which only one of the parameters
in p was varied, were applied to the lower piece of the letter
image. In each case, only one of the parameters changed its
value in specific interval which was chosen to be ±10 for
translations (mm) and rotations (degrees) and 1 ± 0.20 for
scalings. Shearing parameter was not tested here as it makes
no difference without a non-identity scaling. Instead, it was
tested together with the other parameters while evaluating the
transformation recovery performance which is explained later
in this section. 21 equally spaced values were sampled from
the give interval. For each case, the error between the applied
and the recovered parameter was computed. For translation
and rotation parameters, absolute value of the summation of
the applied and the recovered parameter values are computed
whereas for scaling deviation of their ratio from identity is
computed. The error plots for each parameter in the specified
interval are shown in Figures 6(a) and 6(b). We can make
several observations looking at the figure. First of all, it is
obvious that the most problematic parameter is the rotation.
Although the parameter recovery error is reasonable in the
vicinity of 0, i.e. small rotations, it gets quite large towards
the marginal values. Another observation is that the recovery
error for the translation parameter in the direction orthogonal
to the stitching boundary is quite larger than its counterpart
in the parallel direction, which is the same for the scaling.
The reason for this is obvious since a physical gap is created
in both cases, which makes the recovery process more error
prone. The recovery error for the other parameters are almost
zero, meaning that all the parameters are successfully restored
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Fig. 7. Stitching experiments testing the sensitivity of the proposed technique to non-trivial transformations. The applied transformations are composed by
randomly drawing transformation parameters from the following ranges; translations from ±10mm, rotation from ±10◦, scalings range from 1± 0.20, and
finally the shearing from ±10◦ . Three cases were tested; only rigid parameters (rigid), including anisotropic scaling (affine) and finally including all six
parameters (full-affine). In each case, 200 random initial transformations were composed of only relevant subset of parameters and only those parameters
were optimized for. (a) Box plots show the transformation recover error statistics in each case. It is clear that the error increases as the number of degrees
of freedom increases. Furthermore, adding shearing parameter did not make a significant difference in the overall performance. (b) Mean correlations of the
aligned subimage with the ground truth subimage for different transformations. (c) Mean distance error in the presence of white noise. The added noise ranges
from 0% to 50% of image intensities. The results present paralellism with (a) and (b) with a good performance in rigid case and a decreased performance
for affine and full-affine transformations. Moreover, it is obvious that the noise did not affect the performance of the proposed method.
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Fig. 8. Evaluation of the stitching performance in terms of the structural continuity index (SCI). SCI has been computed for each stitching task as shown
in Fig 6. For each parameter there are 21 experiments where the parameter takes a value from an interval as discussed in Section III-A. Here, we show
the box plots of SCI values for each parameter. (a) Initial SCI values before performing a stitching. (b) Final SCI values after stitching. (c) Change in SCI
after stitching. Looking at (c), one can say that there has been a positive change for the translation and the scaling parameters in the direction parallel to the
stitching boundary. On the other hand, there has been little or no improvement for their counterparts in orthogonal direction. Rotation parameter also presents
with an increased SCI value.

even for the marginal parameter values.

We also compute the correlation of the aligned subimages
with the ground truth to see whether the alignment was correct
in terms of the image intensities. Figures 6(c) and 6(d) show
the correlation results for each parameter for the specified
value range. What is noteworthy is that although the corre-
lation results for the rotation and the translation parameters
are consistent with the parameter recovery error shown in
Figure 6(a), this is not the case for the other parameters
especially for the scaling parameter in the direction parallel
to the stitching boundary, which show a better result in
Figure 6(b). This indicates that the misalignment caused by
the variation of this parameter has been mostly compensated
by the variations in other parameters. This is quite possible
as all of the parameters were optimized simultaneously for
the best alignment. Furthermore, we take the middle of the
stitching border as the origin of the image coordinate space.

For this reason, although a scaling in the direction orthogonal
to the stitching boundary does not lead to a padding, a scaling
in the parallel direction definitely results in paddings during
registration. Therefore, a direct correlation of image intensities
might be misleading in this case. Yet another observation that
can be made from Figure 6 is that, in almost all cases, the
alignment performance decreases towards the marginal values
of the varied parameters. This is an expected behavior since the
registration performance highly depends on the initial position.

In addition to the evaluation of individual parameter errors,
we also compute the recovery error for transformation matrices
as a whole. The error is computed as the mean distance of
a set of points before applying an initial transformation and
after restoring it. The point set consists of 200 points drawn
randomly from a 200mm centered square. Ideally, a success-
ful recovery should lead to zero mean distance error. The
applied transformation are composed by drawing parameter
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(a) Translation (b) Scaling (c) Rotation (d) Translation (e) Scaling (f) Translation + Gap

Fig. 9. Stitching experiments on 2D microscopic images. There are two microscopic image pairs P1 [(a)-(c)] and P2 [(d)-(f)] used for the experiments. The
first row shows the initial stitchings obtained by applying affine transformations. In the second row, the final stitchings after the alignment is overlayed onto
the initial one where red and green colors are used for initial and final versions of the aligned subimage. The last row shows the final stitchings without
overlay. In (a)-(b), similarly in (d)-(a), misalignments caused by the variations in the translation and scaling parameters, respectively, are restored. In (c), the
correction of a misalignment due to rotation is demonstrated. Finally, a misalignment caused by a translational transform in the presence of a physical gap
between the subimages is recovered in (f). See the text for the interpretation of this figure.

values randomly from the following ranges; translations from
±10mm, rotation from ±10◦, scalings range from 1 ± 0.20,
and finally the shearing from ±10◦. Three cases were tested;
only rigid parameters (rigid), rigid plus anisotropic scaling
(affine) and finally including all six parameters (full-affine).
In each case, initial transformations were composed of only
relevant parameters and only those parameters were optimized
for. 200 random registration experiments were performed in
each cases. The statistics of transformation recovery errors are
shown in Figure 7(a). From the figure, it is obvious that the
performance decreases as the number of degrees of freedom
increases as expected. The median error for each case are
6.3mm, 12.4mm and 12.2mm, respectively. It is interesting
that including shearing in transformations did not introduce
a significant change in the performance. Non-trivial random
transformations were also used for ground-truth correlation of
image intensities. The results shown in Figure 7(b) present
parallelism with the results of transformation recovery error
as shown in Figure 7(a). The median correlation is about 70%
for rigid case dropping to 35% as the complexity increases.

The proposed method was further assessed in terms of its
robustness against noise. To this end, varying degrees of white
noise was added to the initial pair of synthetic images before
applying any transformation. The noise added ranges between
0%-50% of image intensities. For each noise level and for each
transformation type (i.e. rigid, affine, full-affine), 100 random
transformations were applied to one of the synthetic images
which was then recovered by the proposed approach. Since
a multi-resolution setting would eliminate the added noise

during image pyramid creation, we performed registration only
on the finest level to make sure that the noise is present
during structure propagation. The results shown in Figure 7(c)
demonstrate the robustness of the proposed approach to the
amount of noise contained in subimages.

Another method that we use for the assessment of the
stitching performance is the structure continuity index, SCI,
as defined in Section III. Here, for the same experiments
described above, we computed the SCI before and after a
stitching was performed. Statistics on the SCI values computed
from 21 experiments for each parameter are presented in
Figure 8. Figure 8(a) shows the box plots for the SCI values
before doing a stitching. Parameters tx, sx, i.e. translation and
scaling in the direction parallel to the stitching boundary,
respectively, as well as the rotation parameter, rz, have a
low median SCI value, which is mainly due to the fact that
the initially applied transformations resulted in misalignments
between the structures of subimages. Such misalignments
occurred less in the cases of ty and sy, i.e. translation and
scaling parameters in the direction orthogonal to the stitching
boundary. This is mainly because the structures are either
scaled or shifted in the stitching direction which did not
influence the structure alignments that much. SCI values were
also computed after the stitching as presented in Figure 8(b)
and the changes in SCI values is shown in Figure 8(c). We
can make several observations looking at Figure 8(c). First
of all, one can say that there has been an improvement in
the estimation of the translation and the scaling parameters
in the direction parallel to the stitching boundary. On the
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other hand, there has been little or no improvement for their
counterparts in the orthogonal direction. Rotation parameters
also present an increased SCI value. One can conclude that
stitching performance for correcting the misalignments caused
by the variations in in translation and scaling parameters
in the direction orthogonal to the stitching boundary is not
as good as the performance for correcting other types of
misalignments. However, one should note that the structure
continuity index, SCI, is based on the correlation between the
votes cast by structure points in one of the subimages and the
actual structure points in the other subimage. A transformation
in the direction of stitching usually leads to a loss of structure
points, which also influences the value of the SCI. Therefore,
SCI should not be taken as a sole performance indicator when
evaluating the proposed method.

B. Microscopic Images

Experiments have also been conducted on medical images
to show the effectiveness of the proposed technique on real
images. To this end, we have extracted 2D slices from a two-
photon microscopy data set, which was taken from a mouse
brain. The images were taken to examine the vasculature in
the brain. There are two slices of size 512x512 pixels with
1.16µm uniform pixel size. Again, as it was done in the
previous synthetic experiments, the slices were cut into two
pieces where one of the pieces underwent a transformation in
order to induce a misalignment of structures across the cutting
border. Figure 9 shows a series stitching experiments on the
created pairs demonstrating the performance of the proposed
method on microscopic images with synthetic misalignments.

In order to test the proposed registration technique using
structure propagation on a real data without synthetic trans-
formations and also to compare it to a competitive registration
method, four microscopic image pairs, with subimages of
256x256 pixels resolution and 2.32µm uniform pixel size,
were used for the experiments. An example pair along with
corresponding structure images are shown in Figures 10(a)
and 10(b). The overlap region was further removed from
one of the subimages for each pair in order to assess the
proposed approach in no overlap case. Ground truth rigid
transformations were obtained by using corresponding land-
marks manually annotated in both subimages which resulted
in overlap sizes of 53.47µm, 62.76µm, 55.79µm and 62.76µm,
respectively. For the experiments with overlap, three different
scenarios were used for registration with and without structure
propagation. First, a good initialization of transformation close
to the ground truth was provided in the beginning. Secondly,
white noise in the range of 50% of the image intensity were
added to the images. Finally, subimages were placed only side-
by-side where stitching boundaries were touching each other.
The last scenario was further used for aligning without overlap.
Again, mean distance error was used for the evaluation of the
registration performance. For structure propagation, the value
of scale parameter was fixed to 50µm for each pair. The errors
shown in Figure 11 indicate the comparable performance of
the proposed approach in the presence of an overlap when a
good initial estimate of the transformation is provided. Our

(a) Before alignment (b) Structure images (c) After alignment

Fig. 10. A pair of microscopic images used for the evaluation of the proposed
method in comparison to the classical approach. (a) Before an alignment was
performed. (b) Corresponding structure images with propagated structures.
(c) After the subimages were aligned using the proposed method. Aligned
subimage is overlayed onto the original one.
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Fig. 11. Comparison of the proposed technique using structure propagation to
registration without structure propagation. four different microscopic image
pairs are used. For the experiments with overlap, three different scenarios
are used. First, a good initialization close to the solution is provided in the
beginning. Secondly, white noise in the range of 50% of the image intensity
is added to the images. Finally, subimages are placed only side-by-side where
stitching boundaries are touching each other. The last scenario is further used
for aligning without overlap. Mean distance error of a randomly drawn point
set is used for the evaluation. Note the errors are shown in log scale for
better visualization. The results indicate the good performance of the proposed
approach in various scenarios with and even without overlap whereas it is only
possible to do an alignment in the presence of an overlap and when a good
initialization is provided.

approach already outperforms the classical approach when
the overlap region is degraded with white noise. However,
when the alignment is initialized by placing the subimages
only side-by-side (i.e. touching), the classical approach fails
to find a transformation close to the ground truth whereas
the current approach can still succesfully align the subimages.
Moreover, it was not possible to use the classical approach
in no-overlap case where, again, a good performance was
obtained by using structure propagation. The results reveal
that registration with structure propagation can be successfully
used also for correcting misalignments in real images.

Based on the previous experiments, it is clear that the
physical gap between subimages has a negative influence
on the stitching performance. Since one of the goal of the
proposed techniques it to overcome the limitations caused by
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the physical gap between the subimages, we have conducted
further experiments to test the sensitivity of the technique
to the size of physical gap between the subimages. To this
end, we have manually introduced a physical gap of varying
size to the lower subimage of the microscopic image pair
P2 as illustrated in Figure 9(f). There are 21 different gap
sizes sampled from the interval [0µm,20µm]. For each gap
size, misalignments of varying magnitude were introduced
by applying 21 different translational transformations from
the interval ±20µm in the direction parallel to the stitching
boundary. We have calculated the parameter recovery error in
order to evaluate the influence of the amount of translation
and the size of physical gap, respectively. Figure 12(a) shows
that the stitching performance is not influenced too much by
the amount of misalignment in the presence of a physical
gap. However, when the parameter recovery error is plotted
against the size of the introduced physical gap as shown in
Figure 12(b), it becomes obvious that the stitching perfor-
mance decreases with the increasing gap size. This is again
an expected behavior since initially it was claimed that a non-
overlap stitching is possible if the subimages are sufficiently
close to each other. This is a much looser condition than the
one that classical stitchings often require. It is still noteworthy
that with the proposed technique it is still possible to stitch
two subimages even if there is a physical gap on the order
of 20µm between them. However, looking at Figure 12(b),
in order to guarantee a successful stitching, one can allow a
physical gap of around 12µm as a threshold after which the
deviation of the error from the median starts to increase.

IV. DISCUSSION

The proposed stitching method presented here is designed
to overcome the limitations of classical techniques by enabling
a “perceptually good” alignment of images under difficult
conditions like having small or no overlap by means of
structure propagation. The method is addressing the state of
art. However, there are still several limitations of the technique
arising either from the employed method for the structure
propagation or from the used image registration technique.

The tensor voting technique is capable of propagating the
information regarding the underlying structure. However, with
the current technique only the local orientation is taken into
account for the propagation of the information. Therefore,
currently, structures can be propagated only as linear struc-
tures. Although there have been attempts to include the local
curvature of the underlying structure into the voting procedure
[38], [49], they are usually iterative approaches which are not
optimal due to high computational complexity and possibility
of drifting. In the ideal case, a point should propagate its
information based not only on its local orientation but also
on the local curvature of the underlying structure.

The scale parameter of the weighting term is another factor
that has an influence on the quality of propagation. A too
large scale parameter causes blurry propagation of structures
while having it too small yields to a limited propagation of
local structural information. The choice of this parameter is
strongly related to the size of the region of extension, Ωie in

Figure 2(a). In our experiments, we use a value of 20mm for
the overlap region which proved to be enough. Accordingly,
the scale parameter was chosen to be 40, which guaranteed
that a structure point located 20mm into Ωi can send a vote
to the farthest point within the region of extension, Ωie. The
choice of this parameter depends also on the size of physical
gap. Obviously, for a large gap size, a larger value of scale
parameter is needed.

Although promising results were observed during experi-
ments, the obtained registration errors, especially the ones
shown in Figure 7 indicate that the proposed registration is
still far from being compared to the classical registration
techniques. However, it should be noted that these results are
despite the absence of an overlap whereas no errors have been
reported so far in such challenging cases.

Another important point to be discussed is the similar-
ity measure for the affine registration. Currently, normalized
cross-correlation (NCC) is employed as the cost function for
evaluating the (dis)similarity between S1 and S2 as described
in Section II-D. Although, satisfactory results are obtained
using NCC, a more specific cost function could be proposed,
which accounts for the differences in the representation of the
propagated and existing structures.

Although the demonstrations include only two images, the
proposed method could also be extended for the alignment of
multiple images. If a prior information is available, then, a
simultaneous optimization strategy can be employed to obtain
the optimal transformation parameters for neighboring images.
Otherwise, a method similar to the one employed in [23]
can be used to first identify adjacency relationships between
subimages. Here, the proposed structure propagation technique
can be employed to enable the comparison between subimages
when no overlap is available.

There are a few challenges associated with the extension of
the proposed approach to 3D. First of all, although the tensor
voting framework is readily extensible to 3D, the interpretation
of the saliences would need further consideration. In 2D, only
curve saliences are derived from tensors whereas, in 3D, both
surface and curve saliences are present and they should simul-
taneously be considered during registration. The additional de-
grees of freedom add further complexity during transformation
estimation. Furthermore, additional computational cost should
be expected in 3D also during the determination of adjacency
relationships if the proposed structure propagation technique
is used to establish overlap regions between subimages.

V. CONCLUSION

In many medical imaging applications ranging from mi-
croscopy to ultrasound to digital pathology, a wide field of
view is usually desired to enable a better analysis at different
scales. However, having a wide field of view is often limited
by the capabilities of the imaging devices in guaranteing large
field of view at highest resolution. Therefore, it is a common
practice to acquire smaller pieces which are then stitched
together in order to get a larger field of view. There has
been many solutions proposed in the past for the stitching of
subimages in various applications. The common requirement
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Fig. 12. Stitching experiments testing the sensitivity of the proposed technique
to the size of the physical gap. 21 different gap sizes from the interval
[0µm,20µm] are introduced to one of the subimages in the direction of
stitching as illustrated in Figure 9(f). For each gap size, 21 translational
transforms from the interval ±20µm are applied in the direction parallel to
the stitching border. In each case, parameter recovery error is computed. In
(a), the parameter recovery error is plotted against the amount of translation.
It is clear that there is not much correlation between the amount of translation
and the associated recovery error in the presence of a physical gap. However,
when plotted against the size of the introduced physical gap as shown in (b), it
becomes clear that the parameter recovery error increases with the increasing
gap size, which is an expected behavior. It should be noted that it is still
possible to perform a stitching even if the size of the gap is on the order of
20µm, which is the novel side of the proposed method.

for almost all of these techniques is that the subimages to be
stitched have to have at least a sufficient amount of overlap in
order to be able to optimize some transformation parameters
using the information shared in this overlapping region. The
amount of overlap has remained as a challenging issue which
is often circumvented by the undesired solution of enforcing
a sufficient overlap during image acquisition. Although this
is a solution, it not only brings further complications to the
acquisition protocol such as using accurate motorized stages
as in the acquisition of large field of view microscopic images
but also introduces further computational complexity during
the final stitching.

In this work, a novel image stitching technique is proposed,
which addresses specifically the classical overlap issue in
image stitching. A perceptual grouping approach is employed,
which has been mostly used for the grouping of contours in
computer vision tasks. The main motivation for incorporating
a perceptual grouping technique in the stitching is the belief
that such an approach will ensure the continuity and the
smoothness of structures across subimages to be stitched.
This belief is based on the fact that perceptual grouping
techniques are usually inspired by the perceptual power of
the human visual system which is based the observation that
a human observer can visually reconstruct an occluded region
based on the smoothness and the continuity principles of
underlying structures. Smoothness and continuity of structures
are essential properties for medical images. Although ensuring
these properties is possible with the existing methods when
a sufficient amount of overlap is present, it gets challenging
as the amount of overlap decreases. For this reason, it is
a common practice and a necessary step to guarantee a
“sufficient” amount of overlap between the subimages during
image acquisition. It becomes even impossible to perform a
stitching with the existing stitching methods if there is no
overlap between the pieces. Therefore, the proposed method

is designed to overcome this limitation by allowing a “percep-
tually good” alignment in such scenarios by means of structure
propagation which helps to create an overlap region where the
information is extrapolated from the non-overlapping regions
of subimages.

In this article, we have demonstrated by the experiments
on synthetic and medical images that it is possible to do
a stitching in a non-overlap scenario. The results of the
experiments suggest the good performance and the potential of
the proposed technique. However, there are still several open
issues to be addressed. First of all, the tensor voting technique
should be further extended to allow a non-iterative voting for
the propagation of self information by considering the local
curvature of the underlying structures. This will improve in
turn the subsequent registration performance yielding a better
stitching in the end. Furthermore, an extension of the the
proposed method to 3D is of great advantage to enable also
the volumetric stitching. Last but not the least, considering a
non-linear transformation model could nicely expand the field
of application of this novel method.
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