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Abstract. With the recent advances in computational power, realis-
tic modeling of heart function within a clinical environment has come
into reach. Yet, current modeling frameworks either lack overall com-
pleteness or computational performance, and their integration with clin-
ical imaging and data is still tedious. In this paper, we propose an in-
tegrated framework to model heart electromechanics from clinical and
imaging data, which is fast enough to be embedded in a clinical setting.
More precisely, we introduce data-driven techniques for cardiac anatomy
estimation and couple them with an efficient GPU (graphics process-
ing unit) implementation of the orthotropic Holzapfel-Ogden model of
myocardium tissue, a GPU implementation of a mono-domain electro-
physiology model based on the Lattice-Boltzmann method, and a novel
method to correctly capture motion during isovolumetric phases. Bench-
mark experiments conducted on patient data showed that the computa-
tion of a whole heart cycle including electrophysiology and biomechanics
with mesh resolutions of around 70k elements takes on average 1min 10s
on a standard desktop machine (Intel Xeon 2.4GHz, NVIDIA GeForce
GTX 580). We were able to compute electrophysiology up to 40.5× faster
and biomechanics up to 15.2× faster than with prior CPU-based ap-
proaches, which breaks ground towards model-based therapy planning.

1 Introduction

Cardiovascular diseases are a burden with high social, economic and healthcare
impact. For instance, heart failure alone affects an estimated 2% of adults in
the Western countries [8]. Dilated cardiomyopathy (DCM) is one of the most



common causes of heart failure and the leading indication for heart transplanta-
tion in younger adults. Diagnosis and treatment of DCM is challenging and it is
nowadays pivotal to elucidate the individual causes and disease stages of DCM
to allow for appropriate risk stratification, outcome prediction, therapy planing
and monitoring. Computational tools could assist physicians in multiple steps of
the clinical workflow and could impact on future therapeutic strategies.

In the past decades, detailed computational models of heart electromechanics
have been developed. On the one hand, computational models of cardiac electro-
physiology (EP) have been proposed, from highly detailed ionic models to sim-
plified Eikonal-based methods, see [3] for a review. Recent advances in numerical
methods such as Lattice-Boltzmann algorithms for cardiac electrophysiology [13]
have the potential to enable near real-time EP computation, thus paving the way
to clinical applications. On the other hand, models of active and passive tissue
behavior couple the electrophysiological signal with tissue biomechanics to com-
pute cardiac motion. These models are traditionally solved using finite-element
methods (FEM), but novel approaches for fast simulations are being proposed.
Mass-spring methods offer real-time performance but fail to accurately capture
myocardium tissue material properties [11]. Apart from transverse isotropic lin-
ear elasticity models [14], which become inaccurate for large deformations, the
total Lagrangian explicit dynamics algorithm (TLED) [9] has drawn the com-
munity’s attention, with efficient GPU implementations for fast biomechanical
simulations [15]. However, at the best of our knowledge, efficient and accurate
EP models have not yet been coupled with fast biomechanical frameworks for
patient-specific heart modeling, and there is a lack of integration between image
analysis and modeling tools into a unified framework.

The overarching goal of this work is the development of methods for the es-
timation of personalized models of cardiac function in a clinical setting, starting
with the introduction of an integrated but modular framework for the compu-
tation of patient-specific cardiac electromechanics. In particular, we propose: 1)
an integrated pipeline for anatomical model generation, 2) a method to compute
cardiac motion during the isovolumetric phases that is computationally efficient
and 3) a GPGPU (general purpose graphics processing units) framework to solve
cardiac electrophysiology and biomechanics efficiently.

2 Proposed Electromechanical Model

Four components constitute our complete heart model: After generating a patient-
specific anatomical model from imaging data (Sec. 2.1), we compute cardiac elec-
trophysiology over the cardiac cycle using the end-diastasis geometry (Sec. 2.2)
and couple the calculated potentials with a cardiac biomechanics model (Sec. 2.3).
A lumped model of cardiac hemodynamics is finally employed to compute biome-
chanical boundary conditions (Sec. 2.4).

2.1 Integrated Pipeline for Cardiac Anatomy Modeling

Heart Morphology is automatically estimated, under expert guidance, from
magnetic resonance images (MRI) using a database-guided machine-learning
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Fig. 1. A: Different steps of our automatic pipeline for the estimation of patient-specific
anatomical models. See text for details. B: Definition of fiber directions f and sheet
directions s in terms of angles α and β (e0 circumferential axis, e1 longitudinal axis,
e2 radial axis). C: Fiber and sheet model computed on a patient-specific anatomy.

framework [16] (Fig. 1A). The algorithm yields triangulations of the endocardia
and the epicardium, which are then fused together to form a closed surface of the
biventricular myocardium, serving as basis for tetrahedral volume generation6.
The facets are automatically tagged with labels according to the point-to-mesh
distance between the volume mesh and the detected triangulations.

Rule-Based Model of Myocardium Fibers and Fiber Sheets We calcu-
late myocardium fiber architecture based on patient heart morphology as follows.
Below the basal plane, the fiber elevation angle α (angle with respect to the short
axis plane) and the sheet direction angle β (angle with respect to the outward
radial axis) vary linearly from epi- to endocardium: αepi = −70◦, αendo = +70◦,
βepi = +45◦, βendo = −45◦ [2] (Fig. 1B). Based on the geodesic distance to
the endocardia (dendo) and epicardia (depi), both angles are computed for each
point of the volume mesh: α = (depi αendo + dendo αepi)/(dendo + depi), likewise
for β. We then fix the fiber and sheet orientations around each valve (fibers
are longitudinal around the aortic valve, tangential elsewhere, sheet normals are
oriented towards the barycenter of the valves) and interpolate the local orthonor-
mal basis from the basal plane to the valve, first by following the myocardium
surface, then transmurally [10]. For orthonormality preservation, the interpola-
tion is performed using the Log-Euclidean framework [1]. Fig. 1AC show the
generated fiber and sheet directions in a DCM patient.

2.2 Cardiac Electrophysiology Model

The Mitchell-Schaeffer mono-domain EP model is solved using the recently pro-
posed Lattice-Boltzmann LBM-EP method. The computational domain in LBM-
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EP is a 3D Cartesian grid, where a level-set representation of the patient anatomy
is used to ensure correct boundary conditions. Fiber architecture is rasterized
on the grid to cope with tissue anisotropy (see [13] for details). In this work,
cardiac EP over the heart cycle is computed using the end-diastasis geometry
and mapped back to the volume mesh for the biomechanics computation.

2.3 Cardiac Biomechanics

Cardiac biomechanics is computed by solving the dynamics equation Mü+Cu̇+
Ku = Fa + Fp + Fb, where ü, u̇ and u gather the accelerations, velocities and
displacements of the mesh nodes, M is the mass matrix, K the internal elastic
stiffness matrix and C the (Rayleigh) damping matrix. As described below, force
vectors Fa, Fp and Fb model active stress, ventricular pressure and mechanical
boundary conditions respectively. The dynamics system is solved using the finite-
element method (FEM) on linear tetrahedra meshes with an Euler implicit time-
stepping. The resulting linear system Ξu = F is solved using the conjugate
gradient method.

Passive Stress The orthotropic Holzapfel-Ogden (HO) model [4] is used to
compute tissue biomechanics. The strain-stress energy writes:

Ψ =
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where the ak’s and bk’s are material constants, J is the Jacobian determinant
of the deformation gradient F, J = det(F), D1 is a parameter equivalent to the
bulk modulus and the Ik’s are invariants of the right Cauchy-Green deformation
tensor C = FTF. In the previous equation, the subscripts f and s denote fiber
and sheet directions. Hδ(·) is the logistic function, a smooth approximation of
the Heaviside step function employed here for increased numerical stability.

For efficient computation, Eq. (1) is expressed according to the Multiplicative
Jacobian Energy Decomposition (MJED) formulation [7]: Ψ =

∑
k f

k(J)gk(Ĩ),

where Ĩ = [I1, I4f , I4s, I8fs]. The nodal force Fi and the edge stiffness matrices
Kij are then defined by Fi = −(∂Ψ/∂xi)

T and Kij = ∂2Ψ/(∂xi∂xj), where xi
and xj are two connected nodes. Closed form expressions of ∂fk(J)/∂xi, which

do not involve calculating C−1, are available [7]. Deriving the gk(Ĩ) requires
calculating their first and second derivative with respect to C, which can be
easily calculated through the identities (6.1), (6.4) and (6.10) in [4].

Active Stress The active contraction forces Fa are computed using the model
proposed in [14], which expresses the active Cauchy stress tensor σ in terms
of the action potential. Depolarization and repolarization times, triggering my-
ocyte contraction and relaxation, are obtained from the EP model. The main
parameters of that model are σ0, the maximum contraction that can be reached
by a cell, kATP and kRS , the ATP binding and release rates.

Mechanical Boundary Conditions Two mechanical boundary conditions,
accounting for force vectors Fb, are considered. First, the effect of arteries and



atria on ventricular motion is modeled by connecting the valve plane vertices (au-
tomatically defined as endocardium border vertices) to springs with anisotropic
stiffness to allow longitudinal motion. Second, a pericardium constraint is added
through the contact-based method proposed in [6].

2.4 Cardiac Hemodynamics

We mimic the four cardiac phases filling, isovolumetric contraction, ejection
and isovolumetric relaxation by alternating endocardial boundary conditions.
Ventricular pressure p is added to the dynamics system using the nodal forces
Fp = pN, where N is the vector gathering the lumped area vectors n dS of the
endocardial surface. During filling (ventricular blood flow q > 0) and ejection
(initiated when p reaches the arterial pressure), we directly apply the respective
atrial or arterial pressure, computed using a time-varying elastance model and a
3-element Windkessel model [5] respectively. In between, when both valves are
closed (flow is reverted), we enable the following isovolumetric constraint.

To keep the ventricular volume V constant during isovolumetric phases, we
propose an efficient projection-prediction method that aims at finding the pres-
sure p̃(t) which ensures V (t+ dt) = V0, dt is the time step. To this end, we first
solve the dynamic system without constraint, computing new, unconstrained
vertex positions x̂(t + dt). Thereafter, we reformulate the system including an
unknown corrective pressure λ(t): Ξ(x(t+dt)−x0) = F+λN. Solving the system
at t + dt yields (x(t + dt) − x0) = (x̂(t + dt) − x0) + λΞ−1N. The constrained
system thus writes x(t+ dt) = x̂(t+ dt) + λ(t)Ξ−1N such that V (t+ dt) = V0.

As shown in [12], the Lagrangian coefficient λ is computed by solving a third-
order polynomial. The vertices are then projected by applying displacements
up(t) = λ(t)Ξ−1N. In a final step, we compute the corrected pressure p̃(t) =
p(t) + λ(t) and predict the pressure at the next time step by utilizing a second-
order Taylor expansion scheme, p(t+ dt) = p̃(t) + dtdp̃/dt+ dt20.5d2p̃/dt2.

3 Fast GPU Implementation

Since the computational limitations of our model are predominantely present in
the electrophysiological and biomechanical sub-models, we focused our efforts
on the parallelization of these components, implemented using NVIDIA CUDA.
In the following, we did not impose any simplifications of the mathematical
formulations but rather aimed at reorganizing the underlying algorithm to fully
exploit the parallel infrastructure.

Solving the dynamics equation using FEM involves computing nodal forces
by accumulating the contributions of all elements sharing each node, e.g con-
tributions of surrounding triangles for nodal pressure forces. In this paper, we
propose an efficient adaptation of the parallel implementation strategy proposed
in [15] to circumvent the inability of global random access accumulations on GPU
devices. The key element of our method is the precomputed integer look-up tex-
ture mapElements of size 2 ×Nn × Vmax, where valence Vmax is the maximum



number of elements connected to a node and Nn the number of nodes. It stores
pairs (j, k) for any given node, k holding its local index within adjacent element
j (e.g., k ∈ [1, 4] for tetrahedra). A kernel compute is invoked across the Ne
elements to perform the element-wise computation, storing its results into sep-
arate floating point textures T k of size Ne each. A second kernel accumulate is
invoked across Nn threads, looping over all V pairs (j, k) corresponding to the
respective node and accumulating the element-wise contributions stored at the
j-th positions of textures T k. In contrast to [15], we need to manage only one
texture instead of two, since indexing of mapElement only requires Vmax and not
the actual (non-constant) nodal valence, resulting in simpler code and additional
speed-up through alignment with accumulate kernel threads. The higher mem-
ory demand is negligible in the light of current GPU memory sizes; for a mesh
with 200k elements, Vmax = 42, and Vavg = 16 (average valence), our look-up
texture would require ca. 64.1 MB instead of about 24.4 MB.

Our implementation of the HO model is formulated in a total Lagrangian
framework, allowing for the precomputation of variables and the parallel execu-
tion of nearly all calculations. From the rest state, we precompute tetrahedron
shape vectors Di as the cross product of two opposing edges respectively [7], and
the tensors of fiber, sheet, and cross-sheet directions (f ⊗ f , s⊗ s, f ⊗ s+ s⊗ f).

At each time step, the deformation gradient F is written as
∑4
i=0 xiDi, allow-

ing to compute the right Cauchy-Green deformation tensor C and the invariants
I1, I4f , I4s, I8fs [4]. By using the definitions in Sec. 2.3 and our general GPU
strategy explained above, we compute forces (tetrahedron/vertex look-up table)
and edge stiffness matrices (tetrahedron/edge look-up table) as required by the
implicit integration scheme. Our general strategy was also applied for fast com-
putation of active stress, pressure forces and mechanical boundary conditions.

Finally, since Lattice-Boltzmann methods are inherently node-wise, their im-
plementation on GPGPU architectures is straightforward. A kernel that handles
the stream and collide procedures of the LBM algorithm is employed to compute
the potential at each node of the Cartesian grid.

4 Experiments and Results

4.1 Benchmarking of Computational Performance

To evaluate the performance of our framework, we ran the entire simulation
on one representative patient case with a different number of mesh elements.
Fig. 2A shows the computation times for meshes with 24k, 43k, 64k, 127k and
274k tetrahedra. The time step of our Euler implicit scheme was set to 1ms, we
computed one full heart cycle of 0.8 s with a numerical threshold of 10−2mm for
the conjugate gradient solver. The general dynamics system parameters include
a mass density of ρ = 1.07 g/ml and Rayleigh damping coefficients of 104 for
mass and 10−1 for stiffness. Passive tissue parameters were set as in [4], and σ0
was 150 kPa. We conducted our experiments on a system with an 16-core Intel
Xeon 64-bit CPU at 2.4 GHz and an NVIDIA GeForce GTX 580 graphics card.
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Fig. 2. Whole-heart simulation benchmarks. A: Com-
parison between CPU and GPU runtimes for meshes
with various sizes of the same patient (EP computed on
GPU for both experiments) B: GPU runtimes for two
different meshes on various graphics cards, showing our
method scales well with the number of CUDA cores.

Pat. EFm EFc SVm SVc
1 41% 36% 106 91
2 14% 12% 40 33
3 27% 23% 67 56
4 15% 17% 71 80
5 34% 30% 85 66

Table 1. Comparison of
measured (EFm) and com-
puted (EFc) ejection frac-
tions, and measured (SVm)
and computed (SVc) stroke
volumes (in ml) for 5 cases.

For the anatomical model construction, detection and tracking was performed
in less than 4 s per frame. Preparation times for a mesh with medium resolution
(64k) amounted to 64.4 s for tetrahedral mesh generation and 16.8 s for anatomy
model computation. It should be noted that the anatomical model is built only
once. We are able to calculate the electrophysiology for one full heart cycle in
around 3 s on a Cartesian grid of 1.5 × 1.5 × 1.5mm, which is up to 40.5×
faster than a CPU implementation of the same algorithm (in total between two
and three orders of magnitude faster than current FEM-based approaches with
meshes of comparable resolution). The most significant runtimes correspond to
the biomechanics component of our framework. Here, we gained a mean speed-up
factor of 10.6 (std. dev. 2.8) for different mesh resolutions. For the mesh with 64k
elements, the simulation only required 62 s, and even for the mesh with highest
resolution (274k), an entire heart cycle could be computed in 10 min and 12
seconds. The overall runtime from image to model was 2 min and 31 seconds for
the mesh with 64k elements (Fig. 2A). We also conducted scalability benchmarks
on graphics cards with 48, 192, 480 and 512 CUDA cores with two different
meshes (Fig. 2B). Excluding the experiment on our mobile system (Quadro NVS
4200M) due to its different architecture, our results indicate that the whole-heart
computation time is linearly dependent on the number of available cores, with
higher scalability as the mesh size increases.

4.2 Model Personalization in Dilated Cardiomyopathy

We illustrate our framework on five anonymized datasets of DCM patients with
subnormal to severely abnormal ejection fractions (Tab. 1). The datasets con-
sisted of cine MRI sequences and heart catheter pressure measurements of the
left ventricle and the aorta. We first manually estimated the Windkessel param-
eters using the aortic pressure measurements and the aortic flow obtained from
the images by matching pressure curves. Thereafter, we manually optimized pa-
rameters of the biomechanical model (active stress σ0, boundary conditions) to



Fig. 3. Personalization results for the patient with largest contraction. Long-axis (top)
and short-axis (bottom) slices showing MRI images and personalized model at various
timesteps throughout one heart cycle.

Fig. 4. Personalization results for
the patient with largest contrac-
tion. Left panel shows pressure
curve and right panel volume
curve for the left ventricle, indicat-
ing a good match.

Pressure Volume

match the cardiac motion and ejection fraction as shown in the images. Tissue
parameters were kept to their default values [4]. As one can see from Fig. 3, we
were successful in modeling realistic cardiac motion. The volume and pressure
curves generated by our model (Fig. 4) qualitatively represented the measured
values. Table 1 reports computed and measured ejection fractions and stroke
volumes for all five patients, showing promising agreement. On average, compu-
tation time was 70 seconds to simulate a full heart cycle (mesh resolution around
70k), which is fast enough to allow user interaction with the model.

5 Conclusion and Future Work

In this paper, we have presented an integrated patient-specific framework of
computational heart electromechanics that is fast enough to be applied in clin-
ical routine. Incorporating a very efficient LBM implementation of cardiac EP
with the state-of-the-art Holzapfel-Ogden model for passive biomechanics, our
framework yields medically expedient results and becomes applicable for clinical
therapy planning due to the exploitation of massively parallel GPU architec-
tures. Our framework has important potential applications, for instance it may



enable physicians to plan cardiac interventions and compute predictors of ther-
apy outcome in silico. While parameter adjustment and patient personalization
is still done manually, more automatic methods are being investigated. Future
work also includes the integration of length-dependent active forces and the de-
velopment of efficient strategies for strong electromechanical coupling.
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