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Abstract

We show that the sum of squared differences, commonly used as a dis-
similarity measure in variational methods is biased towards high gradients
and large intensity differences, and that it can affect drastically the quality of
motion estimation techniques such as deformable registration. We propose
a method which solves that problem by recalling that the Euler-Lagrange
equation of the dissimilarity measure yields a force term, and computing the
direction and the magnitude of these forces independently. This results in a
simple, efficient, and robust method, which is intensity-unbiased. We com-
pare our method with the SSD-based standard approach on both synthetic
and real medical 2D data, and show that our approach performs better.

1 Introduction and Motivation
The sum of squared differences (SSD) dissimilarity measure is often used in computer
vision applications because of its computational efficiency. Among other applications, it
is used for variational methods for motion estimation such as optical flow or deformable
registration. Since the optical flow and the deformable registration problem are basically
equivalent, we will from now on focus on deformable registration.

The variational deformable registration task is posed as a minimization of a certain
energy functional. The functional I = D +S consists of two components, the dissimi-
larity measure D to be minimized and the regularization component S which is used to
enforce the well-posedness of the problem.

The minimization problem is mostly solved by deriving and solving the correspond-
ing Euler-Lagrange partial differential equations. The Euler-Lagrange equation can be
expressed as A(ϕ)(x) = f (ϕ)(x) [6]. Here ϕ is the deformation function while the dif-
ferential operators A and f are resulting from the regularizer and from the dissimilarity
measure respectively [6].
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Figure 1: Upper Row: Illustration of the biased behaviour of the unmodified SSD ap-
proach on a synthetic “coffee bean”. (a) and (b) are the input images for the regis-
tration. The initial difference is presented in (c) and (d) shows the result of the al-
gorithm. Due to the intensity values, the convergence is faster in the left-hand side of
the “bean”. This way, the regularizer is saturated by displacements which result mostly
from high gradient regions of the image. This behaviour we refer to as intensity-biased.
Lower Row: Comparison of the registration results on medical data. The images present
differences between reference image R and the template T . (a) Initial difference image.
Notice the large intensity differences at the border of the patient; (b) Difference after the
unmodified SSD-based approach. While the large displacement at the border of the patient
is registered well, the displacement inside the patient is not corrected with the SSD-based
approach due to low intensity differences and gradients; (c) Difference after registration
with our intensity-unbiased modification. The displacements inside the patient are also
corrected.

An interpretation of the Euler-Lagrange equation is helpful as a motivation for the
method we propose in this paper. The operator A can be seen as describing a reaction of a
body, in our case the image, to a set of forces f . It relates the forces f to the deformation
ϕ . The acting force f is computed by the derivation of the Euler-Lagrange equations from
the dissimilarity term D .

As shown in Figure 1, the force resulting from the SSD dissimilarity term is highly
biased depending on the intensity values of the two input images. At a certain point, the
force depends on the gradient of one of the images and the difference of the two images at
this point. Together this leads to large forces at high gradients and large image differences.

Hence, the unmodified use of the SSD implies the assumption that objects evolve dif-
ferently depending on their intensity and background. This would mean that for example
bright objects in front of a dark background move or deform more than darker objects. We



refer to this behaviour as intensity-biased. A basic illustration of the problem is presented
in Figure 1 on synthetic images and an example from a medical domain.

For some applications like morphing where the only goal is to make the images look
similar, this is not a real drawback. Small intensity differences are not very noticeable,
hence they do not have to be corrected as much as the larger ones. However if physi-
cal quantities like real motion are estimated from the results, the intensity-bias problem
becomes crucial. In these applications, not the appearance is important but the correct-
ness of the underlying displacement field. In many settings there is no reason why an
intensity-biased assumption should be made. Besides not being justified for many appli-
cations, this assumption has several drawbacks. As shown in Figure 1 it can lead to slow
convergence in certain areas with low gradients and/or low intensity differences between
the reference and the template image. A consequence is that the regularizer is saturated by
displacements resulting from the image regions with faster convergence. Thus the min-
imum solution of Equation (1) tends to be biased towards the regions of the image with
high intensity differences.

In practice these drawbacks are present in many medical imaging modalities such as
the computed tomography (CT) shown in Figure 1, where high gradients and intensity
differences are present mostly on the boundary of the patient. The actually interesting
regions however, are inside the patient and most often have a rather similar intensity.

To the best of our knowledge, this drawback of the SSD for respective applications
has not yet been addressed in the literature.

We state that for the registration task the result should not be dependent on the partic-
ular intensity values of the input images at one point, that is the gradient and the intensity
difference. This way, although the method stays intensity-based, it becomes intensity-
unbiased.

Instead of computing the forces directly from the Euler-Lagrange equations corre-
sponding to the SSD, we suggest to perform the computation of the force directions and
the computation of the force magnitude independently. Using this approach, we mod-
ify the standard SSD method in order to establish a simple method which is intensity-
unbiased. The developped algorithm can be seen in the framework of ”‘demons”’ regis-
tration by Thirion [8].

With this modification, the direction of the forces is the same as with the standard un-
modified SSD-based approach. The magnitude of the force vectors however is computed
independently. The magnitude is not based on the intensity difference and the gradient at
one point but it is computed according to the structure of the neighbourhood of the point.
This way, the actual displacement of the image point, which can be estimated from the
local neighbourhood, influences the magnitude of the force at that point rather than only
the information at that point.

Some work that might be regarded as similar is the research on robust estimation
of optical flow. To this end, several different error measures for the difference of the
images have been proposed, see for example [2]. Among these measures is also the L1
norm, which results in the sum of absolute differences (SAD) dissimilarity measure when
applied to the difference of the images. While the SAD is less intensity-biased than the
SSD because the magnitude of the force is independent on the difference of the images,
there is still a bias present based on the magnitude of the gradient. Furthermore, the
motivation for the SAD in the context of robust estimation is not to remove the bias but
to weigh the outliers less heavily. One other difference is that the work on robustness



is performed on the level of the energy functional while the approach presented here
modifies the forces on the level of the Euler-Lagrange equations.

2 Method
This section presents a simple and efficient method which can be used for the separate
computation of the direction and the magnitude of forces for variational algorithms. First
however, we briefly introduce the used methods and notation.

2.1 Definitions and Problem Setting
The standard methods for deformable registration used in the following are described in
detail in the literature, for example in [6, 1, 7, 4].

We define an image I to be a mapping I : Ω → B from a respective functional space
H from the d-dimensional image domain Ω = [0,1]d ⊂ Rd to a bounded interval of real
numbers B = [0,1]⊂ R. For our applications the dimension is restricted to d = 2,3.

In the following, we consider the registration task of deforming the template image
T such that it becomes similar to the reference image R. The deformation is described
by the deformation function ϕ , which is a combination of the identity mapping Id and a
displacement field u, such that ϕ = Id +u. Here, ϕ , Id and u are all functions from a space
F , with F = { f | f : Ω → Ω}.

For the computation of the deformation function we define an energy functional
I : H ×H ×F → R to be minimized as

I [R,T,ϕ] = D [R,T,ϕ]+αS [ϕ] . (1)

Here I consists of a dissimilarity term D and a regularizer, also known as smoothing
operator, S whose influence is governed by a scalar parameter α ∈ R, α ≥ 0.

As a dissimilarity measure we use the SSD measure

DSSD[R,T,ϕ] =
1
2

∫
Ω

(R(x)−T (ϕ(x)))2 dx . (2)

For the regularizer component S many different terms can be used. The actual reg-
ularizer component is not essential for the following since the problem is not restricted
to the choice of one special regularization term. The most simple term is the isotropic
homogeneous diffusion term and it is used in this paper. It is defined as

S [ϕ] =
∫

Ω

d

∑
i=1

|∇xϕi(x)|2 dx =
∫

Ω

d

∑
i=1

〈∇xϕi(x),∇xϕi(x)〉 dx , (3)

where ∇x is the spatial gradient operator ∂/∂x and 〈·, ·〉 denotes the scalar product.
With this choice of dissimilarity and regularizer component, this model represents the

well-known Horn and Schunck approach [5].
In order to minimize the functional I we first have to derive the Euler-Lagrange

equation. The deformation function which solves this equation is set to be the solution of
the registration problem. Because of the linearity of the functional, the Euler-Lagrange
equations can be derived independently for the dissimilarity and the regularization term.

The Euler-Lagrange equation derived from the dissimilarity component D is



fSSD(ϕ)(x) =− [R(x)−T (ϕ(x))]∇xT (ϕ(x)) , (4)

and will also be referred to as force. This paper deals with the modification of this term.1

The Euler-Lagrange equation resulting from the regularizer S is

A(ϕ)(x) = ∆ϕ(x) , (5)

with ∆ being the Laplacian operator.2

The resulting Euler-Lagrange equation for the functional I can be expressed using
the differential operators A and f as

−αA(ϕ)(x) = f (ϕ)(x) . (6)

Here f stands for a force term corresponding to a chosen dissimilarity measure, such
as fSSD or fSAD defined in the following. Using a discretization technique such as the
standard finite difference scheme we obtain the discretized form of the upper equation.
This non-linear partial differential equation is usually solved by a gradient descent method
which is also the approach we take here [1]. Furthermore we can employ a Gaussian
resolution pyramid in order to allow for larger displacements [1].

Since we compare the method presented in this paper also to the SAD-based approach,
we present the definition of the SAD

DSAD[R,T,ϕ] =
∫

Ω

|R(x)−T (ϕ(x))| dx , (7)

as well as the corresponding Euler-Lagrange equation

fSAD(ϕ)(x) =− R(x)−T (ϕ(x))
|R(x)−T (ϕ(x))|

∇xT (ϕ(x)) . (8)

This SAD-based force can be used as an alternative to the SSD-based term.

2.2 Modification of the Force Term
If we take a closer look at the Equation (4) we can see that two factors influence the
magnitude of the forces. The main part of the SSD-based force term used in (4) is
[R(x)−T (ϕ(x))]∇xT (ϕ(x)). We see that the force at point x is proportional to the dif-
ference between the reference R(x) and the deformed template T (ϕ(x)) at this point.
Furthermore, it is proportional to the gradient magnitude of the deformed template image
‖∇xT (ϕ(x))‖ at the same point which also depends on the intensities at the point.

To sum up, the above properties of the SSD-based measure cause larger forces for
large image intensity differences and gradients than for others. Since the forces cause
the deformation, this implies the assumption that points with certain intensities are more
likely to move than others. The resulting behaviour is illustrated in Figure 1.

The same problem occurs for the SAD-based approach. In Equation (8), we can see
that although the difference of the intensities is normalized, such that only the sign of the

1The force term is dependent not only on the point x but also on the images R and T and the deformation
function ϕ . However, for the sake of simplicity we will drop these arguments in the following.

2For scalar-valued functions g : Rd → R, the Laplace operator is ∆g = ∑
d
i=1 ∂xi,xi g. For the vector-valued

case, G : Rd → Rm, the Laplace operator is defined component-wise as ∆G = (∆G1, . . . ,∆Gm)T .



difference influences the force, the bias is still present through the unscaled magnitude of
the gradient.

Therefore we propose a modification of the standard SSD-based force term in order
to be able to perform intensity-unbiased registration. To this end we separate the compu-
tation of the direction and the magnitude of the force vectors.

In our approach we keep the direction of the vectors computed with the SSD-based
method, which is the direction of ∇xT (ϕ). We make this choice since forces at edges of
the body, orthogonal to the edges are meaningful and since the force directions do not
cause the intensity-biased behaviour. The direction of the forces is then the normalized
force

fn(x) =
fSSD(x)

‖ fSSD(x)‖
=− R(x)−T (ϕ(x))

|R(x)−T (ϕ(x))|
· ∇xT (ϕ(x))
‖∇xT (ϕ(x))‖

. (9)

Regarding the magnitude of the force vectors, several alternatives are possible. We can
model these alternatives by introducing a function m : Ω → R which assigns a magnitude
to a force at every point of the domain.3 The same general concept for computing the
forces with separate terms for direction and magnitiude is used in [8]. This way we get
the following modified formula for the computation of the forces

f (x) = m(x) fn(x) . (10)

The most simple alternative for m is to not further modify the force term from Equa-
tion (9), that is m(x) = 1, ∀x ∈ Ω. For images without noise this approach works sat-
isfyingly, compare Table 1. In presence of noise however, the forces caused by noise
might cause a wrong behaviour, since they have the same magnitude as all other force
vectors. One possible approach to this problem might be to assume that the forces caused
by random noise will have different directions and thus cancel each other out. This is ac-
tually also supported by the regularizer component S used in the method. For some tests,
performed with Gaussian and uniform noise of different magnitudes on synthetic images
this approach also produced good results. The question is however, how this approach
behaves for general images from real applications. In order to develop a more robust ap-
proach without having to rely on the quality of noise, a modified method for magnitude
computation is needed.

The basic idea behind the modification we introduce for the magnitude computation
is to make the magnitude dependent not on the values at a single point but on the structure
of the neighbourhood of the point.

The intuition behind the method is that if large displacements occur, there is a differ-
ence between the two input images not only at one point but also in the surrounding area.
In order to make this decision intensity-unbiased we are not interested in how large the
difference of the intensities is but only if it is present.

We implement the above intuition by performing the following steps. First, we com-
pute the difference between the reference and the template image D(x) = R(x)−T (ϕ(x)).
In order to make the method more robust in presence of noise, we filter the difference D(x)
by a median filter and take the absolute value of the result. In our experiments, this was
enough to remove the effects caused by noise. This yields a signal, which is very close to

3Again, m is dependent on more parameters than only the domain point (R,T ,ϕ) which we drop for simpler
notation.
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Figure 2: Input for the study on synthetic data. We display the input reference and tem-
plate images, the initial difference and the displacement field used to generate the template
from the reference. The results of the experiments are presented in Table 1 and Figure
3.1.

zero in the regions which have no real difference and larger in other regions, depending
on the intensities. Now we perform a thresholding step in order to remove the still present
bias and set all values below the threshold to 0 and the values above or equal the threshold
to 1. This way, the magnitude is no longer dependent on the magnitude of the intensity
differences of the two images but only on their existence.

3 Results and Evaluation
We test the proposed method on synthetic and medical 2D data. While the medical data
confirm the practicability of the proposed method for real applications, the synthetic test
allow us a quantitative evaluation.

We use a gradient descent approach in order to overcome the non-linearity of the de-
formable registration problem [1] and a homogeneous isotropic regularization term for all
experiments. For the solution of the arising algebraic linear systems we employ a multi-
grid solver [3]. The algorithm is implemented in Matlab with no performance tuning. The
runtime for one iteration step (computing forces, solving the linear system and applying
the deformation) of the gradient descent method is approximately 0.75 seconds for a 2562

image. The runtime overhead needed for the proposed method is approximately 10-15%.
For the comparison of the different methods we try to set the parameters as similar

as possible in order to achieve a fair evaluation. For all methods we use the same reg-
ularization parameter α = 1.0, the same number of iterations, which are sufficient for
convergence of all methods, and we scale the forces, such that the resulting mean force
magnitude is approximately the same for all methods.

3.1 Evaluation on Medical Data
The medical data used for this experiment are 2D slices from an abdominal CT scan.
Because in this case we deal with real data we have no ground truth displacement. So we
can only perform a qualitative comparison of the different methods.

We compare the SSD-based method and our approach by visual inspection of the
difference images between the reference R and the deformed template image T after the
registration process. We can see a clear improvement in small gradient and low intensity
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Figure 3: Comparison of the results on synthetic data with 10% uniform noise. The in-
put data is shown in Figure 2. The upper row presents the difference images after the
respective algorithms. Please notice that the maximal errors are lower for the modified
method (range:0-0.25) than for the SSD and SAD-based approaches (range: 0-0.45). The
lower row illustrates the improvement in the displacement field by displaying the norm
of the error fields, compare also Table 1. Here the black values mean that the error of
the computed displacement is low. Clearly, the modified intensity-unbiased approach per-
forms better than the SSD and the SAD-based method in the inner area with low intensity
differences and low gradients. Of course, the error stays large for all methods in regions
with no structure.

difference areas when using our method. The results are displayed in Figure 1. The
registration in this experiment is performed using a Gaussian resolution pyramid.

3.2 Evaluation on Synthetic Data
Comparison of difference images has a drawback that only the apparent similarity is com-
pared - small intensity differences are not visible. For our purposes however, it is more
important to examine the computed displacement fields. In order to be able to perform
this quantitative evaluation of the proposed method, we use synthetic data sets. We em-
ploy a ground truth displacement field in order to compute the template from the reference
image and we also use this synthetic setting to test the methods in presence of noise.

We compare the performance of the standard SSD-based method, the SAD-based
method, the simple modification where all force magnitudes are normalized to unity and
finally our approach.



Results on Image SSD SAD Unit Force Our Method

no noise mean 1.3671 1.1311 0.9525 0.9793
std. dev. 1.5760 1.2636 1.1066 1.1371

10% uniform mean 1.3802 1.1605 1.5652 1.0047
std. dev. 1.5839 1.2666 1.2098 1.1634

20% uniform mean 1.3890 1.2010 1.5693 1.1471
std. dev. 1.5918 1.3232 1.2286 1.2216

Results on ROI SSD SAD Unit Force Our Method

no noise mean 3.2495 2.5384 2.0943 2.2077
std. dev. 1.4085 1.1965 1.1692 1.1288

10% uniform mean 3.2639 2.5792 2.4610 2.2448
std. dev. 1.1500 1.2015 1.3454 1.1833

20% uniform mean 3.2798 2.7180 2.6505 2.4385
std. dev. 1.4202 1.2494 1.3602 1.2561

Table 1: Quantitative results of the phantom study. The upper table shows the results for
the complete image, the lower for the region of interest inside the phantom where the low
intensity differences and gradients are dominating. We compute the norm of difference
between the ground truth uGT and the estimated displacement field u and give the mean
value and the standard deviation of ‖uGT −u‖. The mean of the uGT is 3.5459 with a
standard deviation of 1.5477. The methods tested are the SSD and SAD-based approach,
the simple modification with forces normalized to unity and our intensity-unbiased mod-
ification. Tests were performed with no noise and with 10% and 20% uniform noise. The
modified method presents a clear improvement over both the SSD and the SAD-based
approach. All values are in pixel units.

The used images are generated with the Matlab inbuilt phantom function and the dis-
placement field is a combination of Gaussians in each dimension, see Figure 2. For ex-
periments with noise with use a uniform noise in range of 10% and 20% of the maximal
image intensities, that is [0,0.1] and [0,0.2]. For the experiments we do not use a Gaussian
pyramid since we want to isolate the behaviour of the methods and the pyramid implicitly
influences the results in presence of noise by smoothing on the low-resolution levels.

We compare the methods by examining the norm of difference field e = ‖uGT −u‖
between the ground truth uGT and the displacement field u estimated by the respective
method. The error norm is inspected by computing the mean value and the standard
deviation of e.

The parameters for the proposed approach were determined experimentally. However,
they did not have to be changed during the tests. The size of the neighbourhood for the
median filter is 5×5 and the threshold is ε = 0.025.

The results of the experiments are summarized in Table 1 and Figure 3.1. We can see
a clear improvement of the error of the displacement field with our method in regions with
low intensity differences and small gradients. This leads to an overall better performance
of our approach. The simple force-normalizing approach performs well for the case with
no noise, however it is very sensitive to noise in the homogeneous areas.



4 Summary and Further Work
We address the problem of the intensity-bias of the SSD measure for variational motion
estimation methods. The proposed solution separates the computation of the direction and
the magnitude of the forces, which are usually yielded from the Euler-Lagrange equations
corresponding to the SSD. While we keep the direction of the forces, we modify the mag-
nitude in such way that it is not biased to large intensity differences or high gradients.
The robustness is improved by setting the magnitude to zero in regions where the forces
are resulting only from the presence of noise and not from real deformations. The pro-
posed method is tested on 2D synthetic images and real medical data and shows a better
performance than the standard SSD and SAD-based techniques.

Our further work on this topic will include an integration of the methods presented
here into an existing framework for deformable registration of 3D medical images. Fur-
thermore, we plan to investigate the behaviour of other dissimilarity measures like the
Cross-Correlation, Correlation Ratio and Mutual Information with respect to the problem
of the intensity-bias.
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bert Krüger, and Christian Perwass, editors, DAGM-Symposium, Informatik Aktuell,
pages 476–488. Springer, 2000.

[8] J.P. Thirion. Image matching as a diffusion process: an analogy with maxwells
demons. Medical Image Analysis, 2(3):243–260, 1998.


