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Abstract. In neuro-interventional surgeries, physicians rely on fluoro-
scopic video sequences to guide tools through the vascular system to
the region of interest. Due to the low signal-to-noise ratio of low-dose
images and the presence of many line-like structures in the brain, the
guide-wire and other tools are difficult to see. In this work we propose
an effective method to detect guide-wires in fluoroscopic videos that aims
at enhancing the visualization for better intervention guidance. In con-
trast to prior work, we do not rely on a specific modeling of the catheter
(e.g. shape, intensity, etc.), nor on prior statistical learning. Instead, we
base our approach on motion cues by making use of recent advances in
low-rank and sparse matrix decomposition, which we then combine with
denoising. An evaluation on 651 X-ray images from 5 patient shows that
our guide-wire tip detection is precise and within clinical tolerance for
guide-wire inter-frame motions as high as 6mm.

1 Introduction

Neuro-interventional procedures are minimally invasive surgeries designed for
the treatment of pathologies in the cerebrovascular system. Examples of neuro-
interventions are endovascular aneurysm coiling, embolization of fistulae, or for
stenosis, intracranial angioplasty and stenting. During such procedures surgeons
insert a guide-wire through the patient’s femoral artery in order to navigate the
tools through the catheter up to the brain. The navigation is performed under
image guidance, in particular angiography, where a sequence of fluoroscopic X-
ray images show the motion of the interventional tools inside the patient at video
frame-rate (typically 7.5 or 15 fps). Navigation is a complex task for several
reasons: i) the sensible anatomy in the brain, ii) the low contrast, resolution
and signal-to-noise ratio resulting from limiting the radiation dose, iii) the fact
that X-ray images are only two-dimensional projections of three-dimensional
structures, causing structure super-imposition and occlusions (cf. Fig 1-top left),
and v) motion blur. In this work we aim at assisting the surgeon by automatically



Fig. 1. Example of results for one frame, cropped and scaled for clarity. (top left) orig-
inal frame. (top right) results for the proposed method (RPCA / FNLM). (bottom
left) Estimated foreground E. (bottom right) Estimated foreground Ê = E < 0.

detecting and visualizing the guide-wire (see Fig 1 top right). Such guide-wire
detection could be further used in higher level visualizations, e.g. for 3D guidance
using 3D models of the vessels acquired preoperatively with a rotational X-ray
angiography [1, 3], which is our long-term goal.

Prior work addressing enhanced tool visualization for navigation are based
either on a frame-wise detection or on tracking [8]. We focus hereon on detec-
tion techniques which are more suitable for a fully automated solution and can
serve as input or reinitialization for tracking. Most of current detection tech-
niques exploit the prior knowledge on the line like structure of the guidewire.
For instance, Petkovic et al. [15] designed a filter to enhance line-like structures
observed through X-Ray images, while Bismuth et al. [4], presented a curvilin-
ear structure enhancement using a polygonal path image. These methods are
general but may have problems detecting the tortuous guide-wire tips. Further-
more, they lead only to an enhanced image possibly containing other undesired
structures. To address these issues, Lessard et al. [12] combined filtering with
segmentation, whereas Honnorat et al. [9] relied on steerable filters regularized
by tensor-voting. However, due to the difficulty of selecting the structures cor-
responding to the guidewire both methods still rely on the manual selection of



segmentation seeds for the former, or the guide-wire endpoints for the later, in
order to initialize the algorithm. To overcome the difficulties above, there has
been an increasing interest in automatic guide-wire detection by means of learn-
ing techniques,e.g. [2, 10, 14], which have shown promising results at the cost of
a prior training stage and large amounts of manually labelled data needed in
order to generalize to different image settings.

In this work we propose to detect tools in fluoroscopic sequences by rely-
ing on their motion, which is a less explored type of prior knowledge. A first
approach in this direction was proposed by Spiegel et al. [16], where a sim-
ple background subtraction is applied using as mask an initial frame where no
guide-wire is present. Although such detection is fast and easy to implement, it
assumes a static background; so no patient motion, illumination variations nor
image-parameter changes are allowed. Inspired by advances in sparse and low-
rank decomposition of matrices we propose here a two step approach to detect
the guidewire during neuro-interventional procedures. In the first step, we use a
robust background subtraction method based on Robust PCA (RPCA) [6] to de-
tect candidate guidewire regions. Several reasons motivate our choice for RPCA:
(i) robustness to variations in image brightness, (ii) ability to handle a dynamic
background, and (iii) capability of accounting for the partly-correlated noise
present in X-ray sequences. In the second step, we investigate different methods
to filter remaining noise in the foreground estimation. We evaluate our solution
on clinical data and show its robustness for inter-frame guidewire motion of up
to 6 mm.

2 Method

The input to our method is the fluoroscopic video used for guiding a neuro-
intervention. We assume the main source of visible motion in the video is caused
by the interventional tools, while the remaining part of the images will be close
to static and considered as background. The tools can then be separated by
subtracting the background from the current image of interest. To enforce ro-
bustness against subtle motions and imaging condition changes, the background
is estimated w.r.t. the previous k frames in a sliding window fashion. More for-
mally, we denote the video frames by fi ∈ Rs, i ∈ {1, . . . , N}, with N the length
of the video and s = m × n the size of the image. For each frame of interest
fi, the goal is to obtain a binary mask Mi ∈ {0, 1}s indicating which pixels
belongs to the guidewire. Our method is composed of two steps. First, for each
time-window Robust Principal Component Analysis (RPCA) [6] is applied to
detect candidate guidewire regions for the current frame (cf. Sec 2.1). Then, the
remaining noise is filtered out (cf. Sec. 2.2).

2.1 Low-rank background subtraction via RPCA

To estimate the background of current image fi, we consider a time window
including the last k frames and stack them in the columns of the data matrix



D = [fi−k, . . . , fi], where D ∈ Rs×k. Given the neuro-interventional sequences
have video frame-rates, it is expected that the contiguous frames composing
D are highly correlated. If the correlation is linear, then the matrix D is low-
rank and it is possible to estimate the background masks by finding a rank-q
matrix L approximating the data matrix D, i.e. by optimizing minL ‖ D− L ‖
s.t. rank(L) ≤ q, where q ≤ rank(D). This minimization can be solved using
ordinary PCA over the data matrix D and retaining only the most significant
components to build L.

However, moving parts primary caused by the guide-wire, would cause errors
when using linear methods for estimating a low-rank representation. To handle
such cases, where gross but sparse corruptions are present, Candes et al. [6]
proposed the following Robust PCA method. Assuming the data matrix D can
be modeled as the sum of a low rank matrix L and some additive sparse error
E, i.e. D = L + E, RPCA is able to exactly recover5 L by solving the following
convex optimization problem:

min
L;E
||L||∗ + γ||E||1 s.t. D = L + E, (1)

where || · ||∗ denotes the nuclear norm (enforcing low-rank), || · ||1 is the L1 norm
modeling the sparsity, and γ is a positive weighting parameter controlling the
sparsity (of the foreground). From the different solvers for Eq. 1 we use the in-
exact augmented Lagrangian multiplier method (iALM) [13]. After solution, the
low rank component L gives us an estimate of the background, while the moving
parts of the image and the noise will be encoded in the noise component E. Ac-
tually, the foreground estimate for the current frame corresponds to the (matrix
version of the) last column of E, which we denote here Ek. More particularly
we are interested in its negative range, which contains the motion information
of the dark structures of the interventional tool. To ease later notation, let us
additionally denote:

Ê(x) =

{
|Ek(x)|, ∀Ek(x) < 0

0 otherwise

where x ∈ Ω is a pixel taken from the image domain Ω ⊂ R2. Finally, Ê is
normalized to lie in the range [0, 1], such that intensities belonging to the guide-

wire are close to 1. After this first step, the current foreground estimate Ê will
still contain noise that we target to remove in the second stage of our method
described next.

2.2 Denoising

Since our low-rank background estimation can only cover up noise that is corre-
lated between frames we need a further step to remove remaining artifacts. To
do so, we compare the following four different methods.

5 As long as the error matrix E is sufficiently sparse w.r.t. the rank of L



Thresholding and Cluster Removal (TCR). This method, chosen for its
simplicity and computationally efficiency, consists of a histogram-based thresh-
olding heuristic followed by the removal of small connected components. First,
the discrete histogram of intensities for the current frame is estimated. We as-
sume that the catheter information is in the tail of the histogram (as most pixels
belonging to background have values closer to 1 after the normalization and dom-
inate the distribution). Therefore a threshold tTCR was heuristically determined
by finding the position htail of the first bin exceeding a minimum of counts and
defining tTCR = htail + 1

3 (1 − htail). Only the values below tTCR are retained.
Finally, each pixel x is assigned to a connected component ωx and components
with fewer than cTCR elements are removed. For a pixel x ∈ Ω this results in:

MTCR(x) =

{
1 ∀

(
Ê(x) ≤ tTCR

)
∧ (#ωx ≥ cTCR)

0 otherwise

Hessian-based filtering (HES). Hessian-based methods are popular for
enhancing lines for guide-wire tracking and detection [4]. We used the approach
presented in [16], computing the eigenvalues (|λ1| ≤ |λ2|) of the image Hessian
at each pixel, and determining that a line like structure is present when the
following constraints are true: |λ1| ≈ 0, |λ1| ≤ |λ2|, and |λ2| > tHES, where
tHES denotes a user-specified threshold. The Hessian is computed on the basis of
image second derivatives over smoothed images, where a smoothness parameter
σHES determines the scale of the used Gaussian kernel. A search is done over
a range of scales, rHES = [rmin, rg], where rmin is a small value and rg is an
estimate of the guide-wire radius. At the end, the guidewire mask for a pixel is
computed for the optimal scale r∗HES leading to the highest vesselness value λ∗2.
In sum,

MHES(x) =

{
1 if |λ∗1| ≈ 0, |λ∗1| ≤ |λ∗2|, and |λ∗2| > tHES

0 otherwise

Fast non-local means filtering (FNLM). Non-local means (NLM) filter-
ing methods, introduced by Buades et al. [5], are known to achieve good de-
noising while preserving textures and fine structures, even for high noise levels.
Instead of depending on the guidewire width as the HES method, NLM depends
on an estimate of the standard deviation of the image noise σFNML. Given the
noisy foreground estimation Ê, the denoised value for pixel x is computed as a
weighted average over a search region Rx ⊂ Ω around x:

ÊFNLM(x) =
∑
y∈Rx

w(x,y)Ê(y) (2)

The weights w(x,y) = − exp
∑

t∈{0,...,p}2 |f(x+t)−f(y+t)|2

h , with a h as a filtering
parameter reflect the similarity of two patches of size p× p centered at x and y.
This definition enforces that higher weights are given to pixels lying on patches
with similar structure to the current one. In this work we used a fast variant



of NLM (FNML) that allows for an efficient computation of the weights [7].
The final mask MFNLM is computed by thresholding the denoised image with a
user-defined parameter tFNLM.

Markov-Random-Field (MRF). Inspired by the work in [17] we use a
MRF to enforce the guide-wire continuity. A graph is built, where the vertices
represent the pixels of the image V = {x1, . . . ,xs} and edges E = {exy} link pairs
of neighboring nodes, that is, exy exists if y lies within a square neighbourhood
y ∈ Nx around x. The binary foreground mask MMRF for the guidewire is
obtained by optimizing the following energy according to the Ising model [11]:

min
MMRF

∑
x∈V

u(MMRF(x)) +
∑

exy∈E
α|MMRF(x)−MMRF(y)| (3)

The first term describes the unary potential of a pixel being foreground or back-
ground. u is set to depend on the intensity value of the foreground estimation:

u(M(k)) =

{
βÊ(k) if M(k) = 0

(1− Ê(k))2 if M(k) = 1
(4)

where the parameter β controls the balance between the two unary costs. The
second term in Eq. 3 describes the pairwise potential imposing constraints on the
mask value for neighboring pixels; it penalizes discontinuities and discouraging
noise. The parameter α, controlling the strength of this neighboring dependency
was chosen to be constant and Eq. 3 was minimized using graph cuts [11].

3 Experimental Validation

The validation was performed on fluoroscopic sequences of five patient datasets
with a total of 651 frames of size s = 512×512. The sequences were acquired with
a frame rate of 15 fps. Two of the datasets were acquired using a biplanar X-ray
system. The tip position and guide-wire centerlines were manually annotated by
two experienced observers.

Implementation details

– For the background estimation we set the time window size to k = 20, which
corresponds to 1.333s at the current frame-rate.

– The sparsity parameter of RPCA to γ = 1/(
√

max(m,n)), the tolerance of
the iALM solver to 10−4, and its maximum iterations to 1000.

– For TCR, the number of histogram bins is set to 1000, and the threshold
tTCR is computed by finding the first histogram bin containing 250 elements.
Also, the minimum allowed size for a connected component is cTCR = 8.

– For HES, we set the scale range to rHES = [0.3, rg], with rg given by the
specifications of the guide-wire, and fix tHES to the standard deviation of
the foreground image σÊ.



– For FNLM, we set the filtering parameter as h = 2σÊ, the patch size to
p = 11, and the size of the search region Rx to 43 × 43. h was also used as
final threshold tFNLM.

– Finally, for MRF, a parameter search was performed on a subset of the data.
According to the F1-measure we set 0.06 ≤ α ≤ 0.16, and 8 ≤ β ≤ 10.

Validation / Results Quantitative results of our evaluation are presented in
Table 1. All of the method combinations show as desired high accuracies (ACC)
and very low false positive rates (FPR). This is in part due to an imbalance of
the positive and negative classes as there is a significant larger amount of pix-
els in the background (negatives) in comparison to those depicting the catheter
(positives). Furthermore, the positive predicted values (PPV), not taking into
account the negative class, are also high which is associated to a good precision.
The apparently low TPR values are a consequence of the videos containing rela-
tively long periods of no guide-wire motion, where our motion-based assumption
does not hold. Indeed, the performance depends on the amount of motion, as
well as how much of it is captured by the current time-window. We claim that
during such static frames the navigation assistance is less relevant.

On the contrary, the most important for the surgeon is being able to see the
moving tip, which has been a challenge for prior techniques. Therefore, we also
measure the distances of the detected tips to the ground truth, which results in
values of around dtip ≈ 2.5mm for at least 3 of the methods. Moreover, if we focus
on the most interesting frames containing tip motion, that is, considering frames
were there ground-truth tip moves up to 6mm and removing frames for which
the tip is static, then, the tip is accurately detected (e.g. d∗tip = 1.28±1.18 mm).
To better illustrate the discussion above we also plot in Fig. 2 the influence of
the underlying motion on the estimated tip distance. The crosses on the vertical
axis (tip motion = 0) indicate no motion of the ground truth tip w.r.t. the
previous frame, leading to the RPCA not being able to detect the guidewire,
and thus resulting in high tip distance estimates. On the other hand, errors
in distance estimates also increase when the tip moves very fast (tip motion
> 6mm), mainly due to motion blur. In these frames tips appear washed out,
and have weak intensities that prevent their detection.

ACC PPV FPR TPR dtip ± σtip missed tips d∗tip ± σ∗
tip

RPCA / TCR 99.30 70.65 0.15 16.16 2.03 ± 2.49 12.66 1.11 ± 1.20
RPCA / HES 99.38 88.11 0.05 13.33 2.54 ± 3.19 34.82 1.64 ± 1.77
RPCA / FNLM 99.37 88.71 0.06 13.78 2.24 ± 2.51 17.88 1.28 ± 1.18
RPCA / MRF 99.33 82.59 0.09 11.90 2.92 ± 2.57 28.68 1.49 ± 1.52

Table 1. Quantitative evaluation: True Positive Rate (TPR), False Positive Rate
(FPR), Accuracy (ACC), Positive Predictive Value (PPV/Precision), avg. tip distance
dtip, missed tips within ROI (80 × 80 px), d∗tip avg. tip distance for the cases where
the ground truth tip moved up to 6mm between the last and the current frame (see
Fig. 2). Distances are given in mm, other values in percentages.



Regarding the comparative performance of the different denoising techniques,
we recommend FNLM given its good accuracy (ACC) and precision (PPV).
Even if HES gives similar results and has less artifacts (FPR) it has twice as
many missed tips than FNLM. Additionally FNLM has the advantage of being
independent of the tool width. While the performance of FNLM in terms of tip
distance is slightly worse than that of TCR, FNLM produces less than half of
the outliers (FPR) compared to TCR, which is for the application more relevant.
In case of tension stress on the guide-wire, fast motions can occur resulting in
artifacts showing a second line (Fig. 1-bottom-left). Note that our method is able
to differentiate such motion (see full foreground estimation Fig. 1-bottom-right)
and correctly detect the guide-wire, whereas other detection methods would
produce false positives or need further processing.

Fig. 2. Estimated tip distance vs. ground truth tip motion. The ground-tip motion is
measured as the Euclidean distance of the ground-truth tip position w.r.t. the previous
frame. Static tips corresponding to ground-tip motion of 0 are not well captured by
our approach, as shown by the estimated distances variate along the vertical axis. This
is to be expected as our method relies on motion cues. Better estimates are obtained
for the four different methods, when the tool effectively moves.

4 Conclusion

Navigating the guide-wire through the vessels and positioning its tip at the
operation site is a crucial step in neuro-interventional procedures. Guide-wire
tracking and detection methods have focused on the delineation of the tip or the
whole guide-wire. Our approach concentrates instead on the motion information
obtained from the last k frames, is independent of the interventional tool being



used, and provides valuable information to the surgeon as during navigation the
motion of the tip and changes in tension on vessels depict the most important
pieces of information that could be overlaid.

One current limitation of the method is in detecting parts of the guide-wire
that are static. This simply because our main assumption to detect the tool is
that the tool moves. Although we have discussed that in a real application this
assumption will be probably enough for navigation, possible ways to overcome
it would be by combining our approach with an appearance model, in order to
complete continuous line structures.

To conclude, we have proposed a robust guidewire detection approach that
takes advantage of state-of-the-art developments in denoising and low-rank and
sparse decomposition. Our work introduces a novel perspective for road-mapping
in neuro-interventions that considers motion as the most important cue for tool
detection. The method is precise, fully automatic, and does not require specific
models of the tools, nor a training stage. It uses the image statistics over a
sliding time-window of a given number of frames, thus being robust to rigid
patient motion or imaging parameter changes. Finally, the algorithm requires few
parameters and can be implemented to eventually achieve real-time performance.
In sum, our method deals with important requirements for its real application
in interventional neuroradiology.
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