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Abstract. Building subject-specific 3D models for pelvic organs from
preoperative imaging is a vital step in achieving augmented reality guid-
ance for robotic prostatectomy. This paper presents a semi-automatic
method for calculating deformations from atlas models to subject specific
models for pelvis, lower spine, coccyx, rectum and prostate. The method
consists of three stages and requires no more than 5 minutes human in-
tervention in identifying 31 landmarks located in the lower abdominal
region. The first step is to perform point-based affine and non-rigid reg-
istration to produce an initial deformation for the whole pelvic region.
The second step refine this deformation with two levels of intensity-based
non-rigid registration, the result of which is then used as the input to
third stage where organ-specific deformations are produced by non-rigid
registrations applied to the region of interest. We applied this method
to build subject-specific models for 18 patients. When compared with
manual segmentation produced by expert clinicians, the result showed
around 20% improvement over the baseline method, which uses only
intensity-based affine and non-rigid registration, and more than more
than 90% on some case where the baseline method failed. We believe
this is a significant step towards clinically usable segmentation of lower
abdominal organs for augmented reality guided robotic prostatectomy.

1 Introduction

Prostate cancer is an increasing problem in an aging society. Amongst the possi-
ble treatments, minimally invasive robotic radical prostatectomy is rapidly gain-
ing acceptance [1]. There are, however, significant rates of incontinence, impo-
tence or incomplete resection [2]. It is crucial that the surgeon accuratley tar-
gets the prostate, particularly near the prostatic apex, and that the surrounding
neuro-vascular bundle is well preserved.

These difficulties can be eased using intraoperative image guidance. It is sug-
gested that augmented reality (AR) provides better guidance though improved
visualisation [3]. AR technology overlays the 3D models of important structures
onto surgeon’s field of view. The fact that Da Vinci system uses a real-time stereo
video captured by endoscope as surgeon’s view makes it a natural platform for
implementing AR guidance.

One major step towards AR surgical guidance is to build patient-specific
3D models of the important organs located in the operational region. These



models are normally built by segmentation of preoperative images such as MRI
and CT. Segmentation is a huge research field. One option is the use of an
atlas. A template segmentation can be registered to an individual, which has
been applied to segmentation of brain [4] and lung tissues[5]. Segmentation of
kidneys has been proposed using a a gradient-fitting deformable atlas [6], and
also segmentation of other abdominal organs such as liver, kidneys, and spinal
cord using a thing-plate spine based probabilistic atlas [7].

Research in segmentation of the prostate and surrounding pelvic organs is
driven mainly by demand in radiotherapy. Intensity-based methods are pro-
posed for MRI [8, 9]. A statistical atlas has also been proposed. Shen et. al. built
a statistical shape model from ultrasound images [10]. Arambula proposed an
active shape model that is optimised by a genetic algorithm [11]. Pasquier et.
al. compared a seed growing method to an adaptive atlas based on morpholog-
ical filtering for the prostate and other abdominal organs on MRI. They found
atlas-based segmentation to be more robust but it requires minor interactive
corrections, while region-growing only works fine for the bladder and rectum, for
which MRI shows good soft-tissue contrast [12]. Their model is further extended
to a probabilistic atlas which deforms only along a certain principle modes in
the training set [13].

To calculate the deformation that warps an atlas to a specific image, one
can use a direct search along the degrees of freedom(DOI) of the atlas. This
method allows unrealistic deformation to be introduced due to unwanted local
maxima. A possible enhancement is to train a statistical atlas which only deforms
within a feasible shape space. However, this enhancement requires a significant
training set. Otherwise restricted deformation may result in failed segmentation
for uncommon shapes in the presence of pathology.

In this paper we present a semi-automatic segmentation-by-registration scheme
for building models of pelvic organs including lower spine, coccyx, rectum includ-
ing rectal-sigmoid junction, and prostate. The original atlas is built on visible
human (VH) [14], and the targeted images are preoperative MR scans of 18
patients. Despite varying resolution, different MR sequences and pathological
shape variation, our method still manged to produce feasible segmentation after
minor manual corrections.

2 Method

Segmentation by registration has been proposed for the lung [5]. Since this
method does not restrict atlas deformation, it can be used for segmenting patho-
logical images. A hierarchy of affine and non-rigid registration proposed by
Rueckert et. al. [15] is used to calculate the transformation that warps the atlas
3D model to fit the subject’s anatomy.

The non-rigid transformation is described by a regular grid of 3D control
points. The B-spline interpolates the displacements inbetween the control points.
The displacement of a control point only affects its local neighbourhood. Hence
a single b-spline transformation can represent both local and global deformation.
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Fig. 1. Flow chart of the registration process

Also, since the atlas remains the same, the control points of transformation for
different individuals naturally correspond. Such correspondence is a requirement
for statistical shape analysis.

In order to produce an accurate transformation, the hierarchical registration
consists of three stages - landmark based registration, intensity-based coarse
registration and a series of registrations performed for each organ (see Fig. 1).
Note that the direction of registration is in fact from subject to atlas because
the resulting transformation calculates the corresponding points in the source
image space for a target image voxel.

2.1 Stage I: Landmark-based Registration

Corresponding landmarks are manually selected in the atlas and the subject im-
ages. This provides an initial registration. A total of 31 landmarks are used: 18
on the pelvis, 2 on either end of the rectum and 11 on the prostate. The selec-
tion of the landmarks on the pelvis and rectum avoids common misregistrations
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resulting from the intensity based approach. The selection of the landmarks on
prostate is to cope with some extremely pathological shape variation.

Affine registration is performed on the landmarks to aligned the position and
orientation. This is followed by a non-rigid registration using 20mm grid size of
which the output transformation is applied to the subject image to produce a
starting point for the next stage. We will describe the reason for choosing this
grid size in the following section.

2.2 Stage II: Intensity-Based Hierarchical Non-Rigid Registration

The second stage is to perform a series of non-rigid registrations between the
atlas and subject’s MR scans. T2-weighted MRI is used because it is one of the
most commonly used diagnostic images and has better soft tissue contrast than
CT or T1-weighted MRI and because the central glad and peripheral zone are
distinguishable [16]. This makes it possible to produce a detailed segmentation
of the prostate.

The registration uses a B-spline as the non-rigid transformation and nor-
malised mutual information (NMI) as the similarity measure. NMI is selected
since it is proven to be the most effective similarity measures for registration of
between images with different modalities [17, 18].

After applying the resulting transformation of stage I onto the subject’s im-
age, an intensity-based non-rigid registration is performed.

Since displacing the control points would only affect their neighbourhoods
and the smoothness of the local deformation is affected by control point spac-
ing, larger spacing leads to a smoother and more global deformation while a
relatively smaller spacing leads to a more localised but less smooth deforma-
tion. The nature of the gradient descent optimisation approach with NMI gives
rise to slow convergence properties and increased sensitivity to local minima.
These unattractive features are especially evident when trying to align large and
complex images. One standard enhancement is a hierarchical approach.

The basic idea is to start with a coarse initial grid size and sub-sampled
image, and refine the transformation iteratively with increasing image resolution
and decreasing grid size. In our experiments we increase image resolution and
reduce the grid size both by a factor of two at each iteration. A large grid size
is required to avoid a highly localised deformation. However, when grid size is
too large, there will be more than one landmark in one grid cell and the b-spline
function fails to interpolate their displacement. It was found that when grid size
is too large, the result of stage I may not be sufficiently accurate.

Taking into account the trade-off between avoiding a very localised defor-
mation and providing interpolation of the dense landmarks on the prostate, the
settings in table 1 are used:

2.3 Stage III: Registration on the Region of Interest

A mask of the atlas is created for each organ by dilating the binary segmentation.
This provides a greyscale image that includes the organ and some surrounding
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Coarse Level Refined Level

Stage I 20mm grid size with 5mm voxel size N/A

Stage II 20mm grid size with 5mm voxel size 10mm grid size with 2.5mm voxel size

Stage III 10mm grid size with 2.5mm voxel size 5mm grid size with 1.25mm voxel size
Table 1. Grid size with corresponding voxel size

tissue. Separate images are created for the pelvis (including partial spine and
coccyx), the rectum, and the prostate. This reduces the unwanted influence of
tissues more distant from the target organs. This also speeds up the registration
process, allowing smaller grid size and voxel dimension to be used.

In the last stage, we apply the resulting transformation from stage II to the
subject’s image and register it onto each masked atlas respectively to get the
transformation for each organ. Applying these transformations to the 3D model
built from atlas segmentation we get the subject specific model.

3 Experiment and Results

3.1 Atlas Construction and Subject Image Preprocessing

A B C

Fig. 2. Visible Human images: Cryo-section (A), T-1 MRI (B) and a combined MRI
of a subject(C).

We used the Visible Human (VH) cryo-sectional image for manual segmen-
tation because it provides good visualisations of the pelvic soft tissues (see fig-
ure 2). The pelvis is segmented and registration performd using the VH T1 MRI
because of poor soft-tissue contrast in CT and poor image quality for T2 MRI.

We acquired lower abdomen MRI scans for 18 patients. There are multiple
scans per subject, generally 5mm axial and sagittal slices with high in-plane
resolution (0.8mm×0.8mm) together with a few focused T2 scans of the prostate
providing higher resolution. In order to take advantage of all these images, we
resample to the highest resolution and calculate a weighted average image that
is used for registration. An example is shown in figure 2 C.

The segmentation procedure described in section 2 is used to propagate the
manual segmentation to all the subjects. Since the modality of VH MRI and the
patients’ MRIs are very different, we chose the patient with be best registration
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Fig. 3. An example of the segmented subject model.

A B

Fig. 4. Segmentation of prostates (marked with bright rings) using direct intensity-
based registration (A) and using landmark(B) before intensity-based registration. The
true prostate positions are marked by dark rings

result to use as the atlas and propagate this segmentation result to its peers.
Results are shown below in section 3.2.

3.2 Segmentation by Registration

Figure 3 shows an example of patient specific model. We compared the result
of our method with a baseline method using the direct intensity-based affine
registration followed by two levels of non-rigid registration.

Figure 4 shows results with and without landmark guidance are compared,
and figure 5, shows results with and without a masked atlas are compared.
Dramatic improvement in accuracy are found in both.

Quantitative evaluation is done by comparing the results to manual seg-
mentation produced for 4 subjects by clinicians. Using normalised partition dis-
tance [19] as measure, our method showed around 35% improvement over the
baseline, and significant improvement (more than 90%) on some case where sim-
ple intensity-based registration failed(see table 2).
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A B

Fig. 5. Segmentation of prostates (marked with bright rings) without using masked
atlas (A) and using masked atlas(B).

Patient 003 Patient 005 Patient 007 Patient 008

Baseline 9.0% 49.1% 3% 2.2%

Stage I 10.4% 10.2% 6.4% 3.5%
Stage II 7.3% 7.4% 5.9% 2.5%
Stage III 4.9% 4.2% 4.5% 1.8%

Table 2. Example partition distances (in voxels) between the manual gold standard
and the semi-automatic segmentation after each registration step.

4 Discussion

We proposed a useful hierarchical segmentation-by-registration scheme for pelvic
organs. Compared to manual segmentation, improvement is found at each stage.
Possible further developments include automatic landmark identification and
construction of a statistical shape or deformation model to restrict the degrees
of freedom of the transformation.
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