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Abstract. This paper describes a general-purpose system for computing regis-
tered stereoscopic video overlays of pre-operative imagery during minimally in-
vasive surgery. There are three key elements to our approach. The first element is
a real-time computer vision system that operates on stereoscopic video acquired
during minimally invasive surgery to extract geometric information. We present
two variations on this system: a dense stereo algorithm and a sparse point-based
method. The second element is an efficient deformable surface-to-surface ICP
registration. The final element is a novel display system that has been customized
to operate well with stereo vision. By combining these elements, we show that
we are able to perform video to volume registration and display in real time. This
in turn facilitates rendering of annotations and visualization of sub-surface infor-
mation on structures within the surgical field. Experimental results are shown on
video sequences recorded during animal and human surgeries.

1 Introduction

Minimally invasive surgery (MIS) is a technique whereby instruments are inserted into
the body via small incisions (or in some cases natural orifices), and surgery is carried
out under video guidance. While advantageous to the patient, MIS presents numerous
challenges for the surgeon due to the restricted field of view presented by the endo-
scope, the tool motion constraints imposed by the insertion point, and the loss of haptic
feedback.

One means of overcoming some of these limitations is to present the surgeon with
addition visual information. This paper describes a system that provides the surgeon
with a three-dimensional information overlay registered to pre-operative or intra-operative
volumetric data. The novelty of the system lies in its use of real-time stereo video data,
online deformable registration, and rendering without recourse to an external tracking
system. We have implemented a version of the system for augmenting the surgical view
during laparoscopic kidney procedures.

Previous work on image overlay using stereo has largely focused on rigid structures
and non-real-time visualization. In particular, [1] presents a system that makes use of
stereo vision to perform image overlay of MRI images of the head. More recently, [2]
briefly describes an attempt to use stereo area-matching on da Vinci images, but they
largely conclude that area-matching does not work well on these images. Kanbara et al.



[3] demonstrated a video overlay using traditional image navigation techniques (which
rely on an external tracking system) and rigid anatomy. Stoyanov et al. [4] described a
traditional single-frame region matching stereo system and validated it against CT, and
in [5] a real-time motion estimation system for discrete points was presented.

2 Methods

Briefly, our implemented system provides three general functions: 1) extraction of 3D
information from stereo video data; 2) registration of video data to preoperative im-
ages; and 3) rendering and information display. We have implemented two methods
for computing depth information and performing registration: a dense stereo matching
algorithm, and a local point-based tracking algorithm. In all that follows, we assume
that the endoscope has been calibrated to determine the corresponding 2D projection
parameters [6].

2.1 Video to CT Registration

Fig. 1. Upper left: Standard image from
stereo literature [7]; Upper right: Dispar-
ity map from upper left image (DP stereo,
with sub-pixel disparity estimation and
left-right check); Lower left: Image of a
kidney surface; Lower right: Depth map of
kidney image (DP stereo).

Extracting Surfaces From Stereo Most
real-time stereo algorithms make use of
area-matching techniques [8]. However,
given the challenges of endoscopic video
imagery, these techniques are often in-
effective due to image noise, specular
highlights and lack of texture. In recent
years, global optimization methods have
been developed to improve the accuracy
of stereo. Original work focused on scan-
line dynamic programming [9]; hierar-
chical methods [10], multiple smoothness
constraints [11], and graph cuts [12]. Our
approach was to develop a highly opti-
mized dynamic programming stereo algo-
rithm which provides a desirable tradeoff
between reliability and speed.

In the following discussion, we as-
sume fully rectified color stereo images
L(u,v) (the left image) and R(u,v) (the
right image). In the top-left cornered im-
age coordinate systems, for any pixel lo-
cation (u,v) in the left camera, we de-
fine the disparity value for a correspond-
ing point (u,v′) in the right image as
D(u,v) = v− v′. Given a known camera calibration, it is well known how to convert
a dense disparity representation into a set of 3D points [8].

Our dynamic programming stereo algorithm optimizes the following objective func-
tion:

Ctr(u,v,d,d′) =
1
2

(
C(u−1,v,d′)+C(u,v−1,d′)

)
+ r(d,d′)+ e(u,v,d) (1)
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where d and d′ are disparity values of the current pixel and the upper left neighbor, r
is the cost of change in disparity between neighbors, e is an image match cost of two
color pixels, and C is the cost of disparities which is initialized to 0 outside the image
boundaries. The image matching function is the sum of absolute differences (SAD) of
a pair of color pixels. Although the absolute difference between the two pixels proved
to be adequate for most cases we observed that in certain challenging lighting condi-
tions integrating the difference over a small region of pixels may improve matching
performance. We impose a cost limit of 25 gray values which has been experimentally
proven to improve matching performance [7]. The smoothness term is a linear function
of the disparity values. We note that (1) is an approximation in the following sense. At a
given location (u,v), it is possible that the left and upper neighbors could have differing
disparities. Thus, in principle the regularization function should include separate terms
for both neighbors, and the minimization in (1) should operate on two independent dis-
parity values. However, this leads to a quadratic (in disparity) complexity. In practice,
the depth resolution of stereo is far less than the lateral (pixel) resolution. As a result,
in most cases there are large patches of consistent disparity. Thus, the approximation of
constant local disparity is quite good, and is well worth the computational savings.

Once (1) is computed for the entire image, the disparity map satisfying both the
horizontal and vertical smoothness criteria can be read out recursively from the memo-
ization buffer M as

D(umax,vmax) = min
d

M(u,v,d)

D(u,v) =
1
2

[
M

(
u+1,v,D(u+1,v)

)
+M

(
u,v+1,D(u,v+1)

)] (2)

In order to improve performance, we make two additional modifications. First, we
choose a reduced scale (typically a factor of two to four) to perform computations. Each
factor of two reduction improves performance by a factor of eight. Second, rather than
searching over the complete disparity range Ds in every image, we only search over a
small bracket of disparities about the previous stereo pair in the image sequence. With
camera motion there are areas of the image (primarily at discontinuities) that occasion-
ally violate this assumption of small change. In practice these areas converge to the
correct answer within a small number of frames. As an optional feature, the algorithm
is capable of computing sub-pixel disparity estimates by fitting a parabola on the costs
associated to the neighbors of the winning discrete disparity. The location of the apex
of resulting parabola determines the estimate of the sub-pixel disparity value.

To reduce the effects of illumination, the video data was preprocessed by first glob-
ally adjusting the brightness and color values of the left video channel to the values
measured on the right channel, and then applying a a Laplacian high-boost filter in
advance to increase the fine detail contrast.

Dense Registration Methods Given a 3D point cloud from stereo, a CT surface seg-
mentation, and a good starting point (typically available based on prior knowledge of
the procedure), our first goal is to compute a rigid registration (Rt ,Tt) of images taken
at time t to a and preoperative surface given a previous estimate (Rt−1,Tt−1).

For this purpose, we use a modified version of the classical ICP algorithm [13]
applied to the depth map computed from the stereo endoscopic video stream as one

80 Balazs Vagvolgyi et al



point cloud (Pstereo) and the 3D model of the anatomy placed in the FOV as the other
point cloud (Pmodel). While Pstereo is a surface mesh that contains only the visible 3D
details of the anatomy, Pmodel contains all the visible and occluded anatomical details.
We assume that Pstereo is a small subset of the surface points of Pmodel , thus before
finding the point correspondence the algorithm renders the z-buffer of the pre-operative
model Pmodel using Rt−1,Tt−1 and extracts those points that are visible by the virtual
camera (Pmodelsur f ace). The resulting Pmodelsur f ace point cloud is a surface mesh simi-
lar to Pstereo, thus finding the point correspondence with Pstereo is now possible. The
implemented method for finding the point matches is accelerated by using a k−d tree
[14]. For finding the rigid transformation we used the closed-form solution technique
employing SVD [15].

After finding the estimated rigid transformation using ICP, a deformable surface reg-
istration is computed. For these purposes, a set of points are defined below the surface in
the CT volume, and a spring-mass system is defined as reported in [16]. For efficiency,
the current implementation computes just the forces between the reconstructed surface
and the CT surface. Given the point correspondence computed by the rigid transforma-
tion, we can easily compute the strain (F(v)) between the corresponding surface points
as

F(v) = γ(Pstereo(CP(v))−Pmodelsur f ace(v)) (3)

where the parameter γ ∈ [0,1] determines the strength of deformation. In our results we
used γ = 1/3.

In an ideal case, the strain vectors could be applied to deform the model directly.
However ICP is a rigid registration algorithm thus the point correspondence between the
model and the deformed surface will always be somewhat incorrect. In order to over-
come this difficulty the algorithm filters the strain field (Ff ilt ) before applying deforma-
tion. The filtering is done with a Gaussian kernel on the neighboring strain vectors. The
neighborhood is defined in 2D on the visible surface mesh of the model. Finally the
force field is applied on the model surface to yield the deformed surface (Pde f sur f ace):

Pde f sur f ace(v, t) = (1−λ )(Pmodelsur f ace(v)+Ff ilt(v))+λPde f sur f ace(v, t −1) (4)

where λ ∈ [0,1] allows adjusting the temporal consistency of deformation.

Sparse Registration Methods There are many cases where surface geometry alone
is inadequate for a unique, stable registration. For such cases, we have also included a
stronger point-based registration method. To use this method, we first assume that the
model has been brought into registration with the video, either using a dense registration
or by other manual means. Once a registration is known, a set of image feature locations,
p1, p2, . . . pn in one image are chosen. A disparity map is calculated as described above.
With this, the corresponding points in the second image are known, and the 3D locations
of those points in CT coordinates are given by the registration. Thus, a direct 3D to 3D
point registration can be performed using [15]. To maintain the registration, a simple
brute-force template tracking algorithm has been implemented to recompute the feature
points in each image. In every frame of the video, the new feature locations are used to
recompute the reconstructed 3D points, and the model is re-registered.
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2.2 Rendering and Display

One of the major challenges is to perform the video processing, registration, and stereo-
scopic rendering of the 3D overlay in real time. In order to eliminate the redundan-
cies in the displaying and registration pipelines, a special-purpose 3D rendering engine
has been developed. The current system does not use any graphics hardware acceler-
ation for 3D rendering in order to make shared memory buffers easily accessible by
the registration algorithm. This rendering engine incorporates all of the functionality of
a typical graphics pipeline, including a a full geometrical transformation engine with
Z-buffering, several lighting models, and various forms of transparent display. The
graphics pipeline supports fast stereo rendering with no redundancy in the lighting and
transformation phases, and shared texture and model memories. By sharing the same
memory layout for representing the 3D geometry and having direct access to the in-
termediate processing steps, we can easily extract the list of visible triangles and the
Z-buffer from the 3D rendering pipeline and reuse them during the dense 3D to 3D
registration. The gains in memory efficiency and computational complexity are signifi-
cant. The final system can render 5 million stereo triangles per second with Texture +
Lighting + Transparency on a Dual Pentium 4 3.2 GHz.

During development, we asked the help of a Urologic surgeon to design the vi-
sual appearance of the 3D models so that they are visible but not obtrusive. Moreover
the surgeon helped us to build other 3D models that provide additional intra-operative
visual guidance for dissecting the tumor. In particular, we also display the kidney col-
lecting system to help the surgeon understand the underlying anatomy relative to the
video view. Figure 4 shows the the final display used for partial nephrectomy.

3 Results

Fig. 2. Left: input image for stereo. Right:
3D mesh rendered with depth shading.

Here, we present details of the per-
formance of the previously described
stereo and registration methods. We
have also included supplementary ma-
terial demonstrating the system operat-
ing on representative video sequences.
In terms of performance, the speed of
the stereo and display engines is more
than adequate for the models used in our
experiments. In the case of the former,
we can compute dense stereo to 1/4 pixel resolution on 240x320 images (one half VGA
resolution) at over 10 frames/second. With respect to the latter, we typically have no
more than 30,000 triangles on our 3D scenes which can be rendered in stereo by the
engine over 100 frames per second. Both of these operate in parallel on separate CPU
cores. Feature tracking is about as fast as dense stereo (10 frames/second) because large
template size is required for the high accuracy feature tracking on endoscopic video
data. All performance numbers include the required pre-processing computations.

3.1 Stereo and Registration on In-Vivo Data Animal Data
Dynamic Programming Stereo The dynamic programming method demonstrates very
stable 3D reconstruction on an intra-operative sequence (Figure 2, left). The high depth
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resolution and the fine details demonstrate that the algorithm had no difficulties dealing
with the discontinuities of the anatomical surface (Figure 2 right). The only cases where
significant discontinuities may occur are the areas of the surgical tools in the field of
view.

Fig. 3. Top row, rigid registration of the anatomical
surface model. Bottom row, deformable registration
of the anatomical surface model. On the left, the de-
formed wire-frame model and on the right, the de-
formed surface model rendered with depth shading.

Registration Results Since we
did not have pre-operative
3D model of the anatomy
corresponding to this surgery
recording, we selected a video
frame where the anatomy was
not covered by any surgical
tools and created a 3D surface
model from the reconstructed
surface mesh. We then used
this model for rigid and de-
formable registration. As ex-
pected, the rigid registration
gave perfect match for the
video frame from which the
model was created. For the rest
of the video, frames the rigid
registration provided a good
approximation of the motion of
the corresponding anatomical
feature. ICP was configured to
stop at 2 mm accuracy and pro-
cess no more than 5 iterations.

Enabling deformable registration improved the surface matching significantly. The de-
formed surface behaves like a latex surface: stretching, shrinking and sticking to the
reconstructed surface (see Figure 3). For rigid registration the average error measured
by ICP was below 2 mm per vertex in the video segment where the surgical tool was
out of the work area (successful registration in 1 iteration). The deformable registra-
tion reduced the average registration error below 0.5 mm for most of the same video
segment.

Evaluation on In-Vivo Patient Data We have applied our methods to two different
interventions. Both were post-process after the surgery itself. In the first case, video
data was recorded during a laparoscopic partial nephrectomy carried out using a surgical
grade stereoscopic endoscope (Scholly America, West Boylston, MA). A segment of the
video was chosen where the kidney surface had been exposed prior to surgical excision
of the tumor. The corresponding CT image for this patient was segmented manually by
a surgeon producing 3D models for the kidney surface, the tumor, and the collecting
system in VTK file format.

Figure 4 shows the final display used for partial nephrectomy. The ring model that
represents the cutting margins on the kidney surface around the tumor as well as the
colors and the transparency levels were verified by the surgeon who performed the
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Fig. 4. Laparoscopic partial nephrectomy of a tumor (sequence 1, left to right): segmented CT
model; source image (left channel); after manual registration and feature point selection; auto-
matic registration and augmented reality overlay of the safety margin of dissection (red ring).

Fig. 5. Laparoscopic partial nephrectomy of a tumor (Sequence 2): automatic registration with
augmented reality overlay of the safety margin of dissection (frames 154, 252, and 430).

Fig. 6. Robot-assisted laparoscopic partial nephrectomy of large lower pole kidney stones (from
left to right): segmented CT model; after manual registration and feature point selection; auto-
matic registration on (frame 109); automatic registration on (frame 407).

surgery. We experimented with automated full-surface registration and manual regis-
tration followed by feature point selection and tracking. Due to the limited amount of
kidney surface appearing in the video, we found that manual registration followed by
“pinning” with surface feature points had superior stability as well as providing better
overall performance. Figure 5 show several examples from a second sequence taken
from the same case.

Our second clinical case was the surgical removal of a large kidney stone. The
data was again recorded with a surgical grade stereoscopic endoscope, this time in the
context of a robotic surgery carried out with the da Vinci system (Intuitive Surgical,
Sunnyvale, CA). In this case, we processed approximately 1 minute of video. The CT
segmentation employed did not contain the collecting system, but did contain both the
stone and the kidney surface. This segmentation was also performed manually. Figure 6
shows the resulting display at three points through the video (at the video frame which
provided the baseline for manual registration, and two other video frames). The asso-
ciated material for this paper contains the entire video sequence. As before, we tested
both the pure surface-based registration and the registration using feature points, and
found the latter to be much more stable.

84 Balazs Vagvolgyi et al



4 Conclusion
We have presented a system for performing real-time deformable registration and dis-
play on solid organ surfaces observed with a stereo video endoscope. The system pro-
duces good results even under the challenging conditions found in intra-operative video.
We have presented results of the stereo processing and registration system on real video
data, and we have evaluated the displays on two human cases.

Although a promising start, it is clear that there are several immediate avenues for
further improvement of the system. First, we intend to combine the surface and local
feature tracking registration, and to automate the selection of points for the latter. Sec-
ond, we are working to parallelize the algorithm to improve the speed of both stereo
processing and registration. Finally, we are planning to perform a formal system vali-
dation in an animal model within the next few months.
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