Ubiquitous and Context Aware Computing: Overview and Systems

Simon Bichler
Outline

• Definition and Motivation for
 – Ubiquitous computing
 – Context aware computing

• Sample Systems

• Discussion
Ubiquitous computing

- In an ubiquitous computing environment:
 - Computers will be everywhere around us
 - We will not be aware that we are using a computer
 - Computers will have moved into the background

- In contrast to microprocessor-driven household appliances today
 - All the computers will be networked together
 - They will be aware of their environment and adapt to it
Ubiquitous Computing (2)

- An example for an ubiquitous information technique:

Writing

- Is found almost everywhere around us:
 - Books, magazines but also
 - Street signs, billboards, even candy paper

- In ubiquitous computing, computers will be just as immersed in our daily lifes
Example of a technology becoming ubiquitous:

Electric motor

- At the beginning of the 20th century a factory would have one motor, driving several machines
- With the advent of cheap electric motors, every machine could have its own motor
- Today there are usually several motors working in one machine, e.g. a modern car
Paradigms for Computing Systems

- Mainframe: Many users per computer
- Personal Computer: One user per computer
- Ubiquitous Computing: Many computers per user

We are currently moving from personal computing to more ubiquitous computing

But all three paradigms will probably coexist
Human Attention

• The limiting factors of computing today are (in most cases)
 - Not processor speed anymore
 - Nor memory size, but

Human Attention

• The computer has to find out somehow, what the user wants it to do
Context awareness

- When two human beings communicate, a lot of context is implicitly available from the situation.
- When communicating with a computer, the context of the situation is usually lost.
- Explicit vs. Implicit communication.

Goal:

The computer does, what the user wants.
Context awareness in mobile and ubiquitous computing

- Context awareness is especially important for mobile and ubiquitous computing:
 - The situation may change dynamically
 ⇒ rich context available
 - The user might be preoccupied e.g. by walking or driving a car
 ⇒ explicit user input may be sparse
 ⇒ the use of implicit input is necessary
Why context is difficult to use

- Context is acquired from non-traditional devices
- Context must be abstracted to make sense
- Context may be acquired from multiple distributed and heterogeneous sources
- Context is dynamic
Ubiquitous computing systems

• Todays ubiquitous computing systems are mostly not usable for any real world problems yet

• But they provide building blocks for useful applications in the future

• The selection of the following sample systems is arbitrary and by no means complete
Active Badges

- Active badges were developed between 1989 and 1992
- Badges send out infrared signals
- A network of detectors inside a building locates the badges
- When all employees carry an active badge, it is possible to locate their positions
- Phone calls can be routed to the closest phone
Active Badges (2)

• A signal is sent only every 15 seconds
 - Less power consumption
 - Less chance of interfering with other badges in the same room
 - People move slowly enough for the system to still be accurate

• When placed in a dark surrounding, the badge is switched off
 => No power switch needed

• Privacy concerns
i-Bean

- Wireless sensor device
- Attached to a person's ring finger
- Measures arterial blood volume waveforms and blood pressure
- Can be used for long-term monitoring of vital signs
i-Bean (2)

- To allow for low power consumption a repeater network is used.
- The data from one or several i-Beans is dynamically routed using the shortest path available.
- The form of a finger ring makes it more comfortable to wear the sensor for extended periods of time.
Phidgets

- Phidgets try to build a physical analogy to graphical user interface widgets:
- Easy to use building blocks to create physical user interfaces:
 - Sensors and actors are attached to a computer via USB
 - API can be used from standard programming languages
Special requirements for Physical Widgets:
- Connection manager
- Identification
- Simulation mode

Some interfaces built with Phidgets:
Project Aura

• Hardware and software for ubiquitous computing is available

• The challenge is the integration of the existing technologies

• Basic principles:
 – Proactivity: Anticipate requests instead of only reacting
 – Self-tuning: Dynamically adapt performance to demand
• Techniques implemented in project Aura:

 - Cyber foraging: Use staging servers to reduce the impact of end-to-end internet latency for mobile devices

 - Wireless bandwidth advisor: Estimate future available bandwidth

 - WaveLAN-based people locator: Use the signal strength and the location of access points to find the position of people
Portable Help Desk

- Portable Helpdesk is an application of project Aura
- The user can locate people and equipment close to him
- Two interfaces:
 - Graphical interface on a laptop computer
 - Audio interface using voice recognition
DyPERS: Dynamic Personal Enhanced Reality System

- Wearable system using augmented reality
- A head mounted camera and microphone can be used to record video sequences
- Theses sequences can then be associated to an object
- When a graphics workstation connected through wireless transceivers detects an object, it replays the associated video sequence
DyPERS: Dynamic Personal Enhanced Reality System (2)

• Possible uses of DyPERS:
 – A conversation could be recorded and associated with a business card
 – A TO-DO list could be stored on the users watch or other personal items
 – A story teller can associate the story to a picture book
 – A teacher could associate object with their words in a foreign language
 – Assembly instructions could be associated with the unassembled parts
 – A person with poor vision could listen to audio descriptions of the things he is looking at
Smart-Its

- Hardware platform to aid the development of ubiquitous computing environments

- Modular approach:
 - Core-board with wireless transceiver
 - Standard sensor board for light, sound, pressure, acceleration and temperature
 - Specialized sensor boards, e.g.: gas sensor, load sensor, video camera, etc.

- Powered by batteries, depending on application they last between a few days and one year
Smart-Its (2)

• Each Smart-It can access the sensors of the Smart-Its around it

• There are different methods to request sensor data:
 − Single value
 − Condition triggered
 − Continuous subscription
 − Constant stream
Proactive Furniture Assembly

- A piece of flatpack furniture has been augmented with Smart-Its:
 - Accelerometers to determine the orientation of the different boards
 - Force sensors to observe screw tightening
 - IR sensors to detect the co-location of boards
 - LEDs to guide the user

- The users action are observed and instructions for further assembly are given
Proactive Furniture Assembly (2)

• Instructions are immediately immersed into the furniture:
 – Blinking LEDs guide the user to the pieces to start with
 – Green or Red light patterns show correct alignment
 – Individual LEDs shows where screws have to be tightened
 – Synchronous flashing LEDs indicate that the task has been finished

• The system supports learning by doing:
 – Explorability
 – Predicatability
 – Intrinsic guidance
Load Sensing Furniture

• Furniture, e.g. tables or chairs can be equipped with load sensors

• Objects put down on a table can be detected, the weight can be measured

• By comparing the different loads in each corner also the position of an object on a table top can be detected

• This can even be used as a pointing device to control a mouse cursor
• When a whole office floor is put on load cells, the location and interaction of people in the room can be measured

• Sample application: "Don't leave your things behind"

• Warns the user if he leaves the room with less weight than he had when entering the room
A-Life System

• Smart-Its with oxygen sensors and oximeters are attached to a person at risk of being buried by an avalanche (e.g. skiers, snowboarders)

• Rescuers can use a handheld device to find the victims, but also to find out about their conditions:
 – Vital signs
 – Possible air pockets

• That way the rescue of several victims can be prioritized by urgency
Points to start a discussion

- Ethical concerns - how far should we let a computer go in making decisions for us?

- Privacy concerns - how to make sure privacy is honored in ubiquitous computing systems?

- Any *really* useful applications you can think of?