Exercises in 3D Computer Vision

Use Matlab and write m-Files to solve this exercises.

This exercice sheet can be done in a team of max. 3 students.

Short remainder on projective geometry

We call \mathbb{P}^n the projective space of dimension *n*. For any point in \mathbb{P}^n , we define its corresponding vector in the homogeneous coordinates:

$$\mathbf{x}_h = [x_1, x_2, \dots, x_{n+1}]^\top \in \mathbb{R}^{n+1}$$

We introduce on \mathbb{P}^n a new equivalence operator \equiv such that: $\forall \mathbf{x}_h, \mathbf{y}_h \in \mathbb{R}^{n+1}$, we have

$$\mathbf{x}_h \equiv \mathbf{y}_h \Leftrightarrow \exists \alpha \in \mathbb{R}^* \text{ where } \mathbf{x}_h = \alpha \mathbf{y}_h$$

If $x_{n+1} = 0$, then \mathbf{x}_h is a *point at the infinity*. If $x_{n+1} \neq 0$, then we can obtain the Euclidian coordinates $\mathbf{x}_e \in \mathbb{R}^n$ from the homogeneous coordinates \mathbf{x}_h .

For
$$\mathbf{x}_h = [x_1, x_2, \dots, x_{n+1}]^\top$$
 and $x_{n+1} \neq 0$, then $\mathbf{x}_e = \left[\frac{x_1}{x_{n+1}}, \frac{x_2}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right]^\top$.

Exercise 1 (P) Projective 2D Transformations (40 Pts)

- A_1 is a 3 × 3 homogeneous matrix that scales a factor of 2 in the *x* direction and a factor of 0.5 in the *y* direction. What is the general form of this matrix? Provide two numerical examples, one normalized where A(3,3) = 1.
- A_2 is a 2D rotation. It rotates a 2D points by an angle of $\frac{\pi}{3}$ clockwise. Give the matrix A_2 .

• Plot the points $\mathbf{p}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mathbf{p}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{p}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{p}_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{p}_5 = \begin{bmatrix} 0.5 \\ 1.5 \end{bmatrix}$, $\mathbf{p}_6 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $\mathbf{p}_7 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as blue crosses; draw the polygon $\overline{\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_4 \mathbf{p}_5 \mathbf{p}_3 \mathbf{p}_1 \mathbf{p}_4 \mathbf{p}_3 \mathbf{p}_2}$ in red; draw the lines $\overline{\mathbf{p}_1 \mathbf{p}_2}$ and $\overline{\mathbf{p}_1 \mathbf{p}_3}$ in blue - these are your axes. Rotate the points \mathbf{p}_i , where $i \in \{1, \dots, 7\}$, with the matrix \mathbf{A}_2 and draw them as blue circles; draw the rotated lines as dotted lines. The original points and line and the rotated line must be in the same window.

Reminder: Concatenate all points into one matrix in order to use the following property:

$$[\mathbf{A}_2\mathbf{p}_1, \mathbf{A}_2\mathbf{p}_2, \dots, \mathbf{A}_2\mathbf{p}_7] = \mathbf{A}_2[\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_7]$$

• Do the same as above with matrix A₁ in another figure window.

- Change the points to homogeneous coordinates. Do the same with the matrix A_3 that performs a translation of $\mathbf{t} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- A₄ performs an affine projection. Take a look at the reminder above to create a transformation A₄, that changes the unit vector of *x*-axis [1,0]^T to [2,1]^T and the unit vector of *y*-axis [0,1]^T to [0.5, 0.8]^T. Confirm your result repeating the drawing steps above.
- Apply the projective transformation defined by the matrix $\mathbf{A}_5 = \begin{bmatrix} 1.02 & 0.01 & 0 \\ 0 & 1.03 & 0 \\ 0.4 & 0.1 & 1 \end{bmatrix}$ to the points and visualize it as above in a 2D plot

points and visualize it as above in a 2D plot.

- A_6 is the matrix that performs first the rotation of A_2 , then the translation of A_3 . Define this matrix. Draw the points and lines like in the questions before.
- A_7 is the matrix that performs first the scaling of A_1 , then the rotation of A_2 , then the translation of A_3 and finally the projective transformation of A_5 . Visualize the transformation as in the tasks above.

Exercise 2 (P) Duality between lines and points (20 Pts)

• Draw the line
$$\mathbf{l}_1 = \begin{bmatrix} 2\\1\\-0.5 \end{bmatrix}$$
 and the point $\mathbf{p}_1 = \begin{bmatrix} 2\\1\\-0.5 \end{bmatrix}$ in blue and the point $\mathbf{p}_2 = \begin{bmatrix} 0.5\\1\\1 \end{bmatrix}$ and the line $\mathbf{l}_2 = \begin{bmatrix} 0.5\\1\\1 \end{bmatrix}$, in red into Figure 1. Add the axes in black.

Reminder: A 2D point with homogeneous coordinates $\mathbf{p} = [x, y, w]^{\top}$ belongs to a line $\mathbf{l} = [a, b, c]^{\top}$ if it verifies:

$$ax + by + cw = 0$$

For drawing it, you may want to set w = 1 (Euclidean coordinates), transform the equation above to the form:

$$y = mx + n$$

and use sample points for x in a certain interval. In this exercise, we suggest to take the interval $x \in [-5, 5]$.

Draw p₁, p₂ as points and p₁ × p₂ as a line into Figure 2 and l₁, l₂ as lines and l₁ × l₂ as a point into Figure 3.

Exercise 3 (P) Projective 2D Transformations for images (40 Pts)

In this exercise, we define the function transImage = transformImage(I, \mathbf{M}) that transforms the image I with the homogeneous (3 × 3) projection matrix \mathbf{M} .

- Create a function p_e = homo2euclid (p_h) that transforms a point from homogeneous coordinates p_h = [x, y, w]^T ∈ ℝ³ to Euclidean coordinates p_e ∈ ℝ² (normalize by w).
- Create the function transImage = transformImageSimple(I,M) that projects each point into the resulting image. Disregard zero and negative values. *Hint*: Find out the new boundaries of the TransImage before creating it.

Figure 1: Bilinear interpolation. Each pixel has the size 1.

- Try the matrices \mathbf{A}_1 to \mathbf{A}_6 with this function. Change \mathbf{A}_5 to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.001 & 0.003 & 1 \end{bmatrix}$ before in order to have a nice projective projection. Are you satisfied with the result? Why was the result predictable ?
- Create function transImage = transformImageReverse(I,M) that takes each point in the resulting image, transforms back to the original image takes the closest point in the original image. Use the inverse matrix of the matrix **M**.
- Change the last function: instead of taking the closest point take the 4 closest points and weigh them according to the area that is covered by the pixel that has a real (not discrete) value.
- (Bonus List some others interpolations techniques. Explain them briefly.