Lab Course Kinect Programming for Computer Vision

Transformations and Camera Calibration

Loren Schwarz (schwarz@in.tum.de)
May 25, 2011

Lecture Outline

Part I: Basics of Transformations

Part II: Basics of Cameras

Outline Part I

- 2D Transformations
- Homogeneous Coordinates in 2D
- Hierarchy of Transformations in 2D
- Hierarchy of Transformations in 3D

2D Transformations

The basic building blocks of transformations are:

- Scaling (isotropic, non-isotropic)
- Rotation (around one rotation axis)
- Translation (motion along the two axes)

Transformations are defined by their action on point coordinates.

Notation:

$$
\underset{\text { original point }}{\mathbf{p}=} \underset{\substack{(x, y)^{\top}}}{\left[\begin{array}{l}
x \\
y
\end{array}\right]} \quad \mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)^{\top}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

2D Transformations - Scaling

Isotropic scaling: same scaling factor in both spatial dimensions

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Transformations - Scaling

Non-isotropic scaling: different scaling factors in the two spatial dimensions

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Transformations - Rotation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Transformations - Rotation

$$
\mathbf{p}=\binom{x}{y}=\binom{r \cos (\alpha)}{r \sin (\alpha)}
$$

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\binom{r \cos (\alpha+\beta)}{r \sin (\alpha+\beta)} \\
& =\binom{r \cos (\alpha) \cos (\beta)-r \sin (\alpha) \sin (\beta)}{r \sin (\alpha) \cos (\beta)+r \cos (\alpha) \sin (\beta)} \\
& =\binom{x \cos (\beta)-y \sin (\beta)}{y \cos (\beta)+x \sin (\beta)} \\
& =\left(\begin{array}{cc}
\cos (\beta) & -\sin (\beta) \\
\sin (\beta) & \cos (\beta)
\end{array}\right)\binom{x}{y} \\
& =\left(\begin{array}{cc}
\cos (\beta) & -\sin (\beta) \\
\sin (\beta) & \cos (\beta)
\end{array}\right) \mathbf{p}
\end{aligned}
$$

2D Transformations - Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

2D Transformations

Have you noticed we have two types of representations for the basic transformations seen so far?

Scaling, Rotation: Matrix-vector product

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Translation: Sum of vectors

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

How to achieve a matrix-vector product form for all types of transformations?

Outline Part I

- 2D Transformations
- Homogeneous Coordinates in 2D
- Hierarchy of Transformations in 2D
- Hierarchy of Transformations in 3D

Homogeneous Coordinates in 2D

How to achieve a matrix-vector product form for all types of transformations?

- Write a 2D point in homogeneous coordinates:

$$
\mathbf{p}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \in \mathbb{R}^{3}
$$

> We will see more properties of homogeneous representation later.

- Then, translation can easily be expressed as a matrix-vector product:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Homogeneous Coordinates in 2D

- Rotation in homogeneous representation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Combined transformations (here: rotation and translation):

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta-y \sin \theta+t_{x} \\
x \sin \theta+y \cos \theta+t_{y} \\
1
\end{array}\right]
$$

2D Projective Space

When dealing with points represented in homogeneous coordinates, we are working in a Projective space.

- Points in 2D Euclidean space are represented by Cartesian coordinates

$$
\mathbf{p}=\binom{x}{y} \in \mathbb{R}^{2}
$$

- Points in 2D Projective space are represented by Homogeneous coordinates:

$$
\mathbf{p}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \in \mathbb{P}^{2}
$$

2D Projective Space

Point in Euclidean 2D space

Point in Projective 2D space.
All points on the orange line represent the same point. A homogeneous vector in 2D projective space represents an equivalence class of points.

Points and Lines in 2D Projective Space

Properties of points

- A 2D point $(x, y)^{\top}$ has the homogeneous representation $(x, y, 1)^{\top}$.
- The homogeneous vector $(x, y, w)^{\top}$ with $\mathrm{w} \neq 0$ represents the point $\left(\frac{x}{w}, \frac{y}{w}, 1\right)^{\top}$.
- For any non-zero $k,(x, y, w)^{\top}$ and $k(x, y, w)^{\top}$ represent the same point.

Points and Lines in 2D Projective Space

Properties of lines

- A line $a x+b y+c=0$ has the homogeneous representation $\mathbf{l}=(a, b, c)^{\top}$.
- A point \mathbf{x} lies on a line \mathbf{l} if and only if $\mathbf{x}^{\top} \mathbf{l}=0$.
- Two lines \mathbf{l} and \mathbf{l}^{\prime} intersect in the point $\mathbf{x}=\mathbf{l} \times \mathbf{l}^{\prime}$
- The line joining the two points \mathbf{x} and \mathbf{x}^{\prime} is $\mathbf{l}=\mathbf{x} \times \mathbf{x}^{\prime}$.

Points and Lines in 2D Projective Space

Special points and lines

- Points with $3^{\text {rd }}$ coordinate zero $(x, y, 0)^{\top}$ are called points at infinity.
- All points at infinity lie on the line at infinity $\mathbf{l}_{\infty}=(0,0,1)^{\top}$.

$$
\mathbf{l}_{\infty}^{\top}(x, y, 0)=(0,0,1)^{\top}(x, y, 0)=0
$$

- Parallel lines intersect at infinity.

In projective space, all lines intersect in a point, even parallel lines.

Outline Part I

- 2D Transformations
- Homogeneous Coordinates in 2D
- Hierarchy of Transformations in 2D
- Hierarchy of Transformations in 3D

Hierarchy of Transformations in 2D

- Classification of transformations in terms of quantities or properties that are invariant (left unchanged) by the transformation
- Hierarchy: Starting from most specialized type of transformation, successively remove invariants to get more general types of transformations

Most general:	Projective transformations
	Affine transformations
	Similarity transformations
Most specialized:	Euclidean transformations

- Containment relation from general to specialized, e.g.: affine transformations have all properties of projective transformations, plus additional ones.

Hierarchy of Transformations in 2D:
Euclidean Transformations

- Transformation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {euclidean }}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \quad \begin{array}{r}
\mathbf{R}^{\top} \mathbf{R}=\mathbf{I} \\
\operatorname{det}(\mathbf{R})=1
\end{array}
$$

- Degrees of freedom:
- 3 (1 rotation, 2 translation)
- Invariants: length, area, angles

Hierarchy of Transformations in 2D: Similarity Transformations

- Transformation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {similarity }}=\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \quad \begin{aligned}
\mathbf{R}^{\top} \mathbf{R} & =\mathbf{I} \\
\operatorname{det}(\mathbf{R}) & =1
\end{aligned}
$$

- Degrees of freedom:
- 4 (1 rotation, 2 translation, 1 isotropic scaling)
- Invariants: ratio of lengths, angles, parallel lines

Hierarchy of Transformations in 2D: Affine Transformations

- Transformation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {affinity }}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \quad \mathbf{A} \text { non-singular }
$$

- Degrees of freedom:
- 6 (2 translation, 4 entries of \mathbf{A})
- Invariants: parallel lines, ratios of areas, line at infinity

Hierarchy of Transformations in 2D: Affine Transformations

Affine transformations geometrically consist of two components:

$$
\mathbf{A}=\mathbf{R}(\theta) \mathbf{R}(-\phi)\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \mathbf{R}(\phi)
$$

Hierarchy of Transformations in 2D:
 Projective Transformations

- Transformation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
v_{1} & v_{2} & v
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {projectivity }}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{v}^{\top} & v
\end{array}\right] \quad \mathbf{A} \text { non-singular }
$$

- Degrees of freedom:
- 8 (9 arbitrary matrix entries, up to scale)
- Invariants: Intersection points, tangency, cross-ratios

Hierarchy of Transformations in 2D - Summary

Projective	8 DOF		$\left[\begin{array}{cc}\mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\top} & v\end{array}\right]$
Affine	6 DOF	\square	$\left[\begin{array}{cc}\mathbf{A} & \mathbf{t} \\ \mathbf{0}^{\top} & 1\end{array}\right]$
Similarity	4 DOF		$\left[\begin{array}{ll}s \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1\end{array}\right]$
Euclidean	3 DOF		$\left[\begin{array}{cc}\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1\end{array}\right]$

Action of Transformations in 2D on Points at Infinity

- Affine Transformations:

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{c}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y \\
0
\end{array}\right]\right.
$$

Action of Transformations in 2D on Points at Infinity

- Projective Transformations:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
v_{1} & v_{2} & v
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y \\
v_{1} x+v_{2} y
\end{array}\right]
$$

Point at infinity,
Mapped by projective e.g. intersection transformation to a finite of blue lines point (vanishing point)

Outline Part I

- 2D Transformations
- Homogeneous Coordinates in 2D
- Hierarchy of Transformations in 2D
- Hierarchy of Transformations in 3D

Homogeneous Coordinates in 3D

How to achieve a matrix-vector product form for all types of transformations?

- Write a 3D point in homogeneous coordinates:

$$
\mathbf{p}=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \in \mathbb{R}^{4}
$$

- 3D projective space: properties analogous to 2D homogeneous representation
- All types of transformations (scaling, translation, rotation, etc.) can be written as a matrix-vector product
- Several transformations can be composed into one transformation matrix

Hierarchy of Transformations in 3D (1): Euclidean Transformations

- Transformation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {euclidean }}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \quad \begin{array}{r}
\mathbf{R}^{\top} \mathbf{R}=\mathbf{I} \\
\operatorname{det}(\mathbf{R})=1
\end{array}
$$

- Degrees of freedom:
- 6 (3 rotation, 3 translation)
- Invariants: volume, angles

Hierarchy of Transformations in 3D (2): Similarity Transformations

- Transformation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s r_{11} & s r_{12} & s r_{13} & t_{x} \\
s r_{21} & s r_{22} & s r_{23} & t_{y} \\
s r_{31} & s r_{32} & s r_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {similarity }}=\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \quad \begin{array}{r}
\mathbf{R}^{\top} \mathbf{R}=\mathbf{I} \\
\operatorname{det}(\mathbf{R})=1
\end{array}
$$

- Degrees of freedom:
- 7 (3 rotation, 3 translation, 1 scaling)
- Invariants: angles

Hierarchy of Transformations in 3D (3): Affine Transformations

- Transformation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{x} \\
a_{21} & a_{22} & a_{23} & t_{y} \\
a_{31} & a_{32} & a_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {affinity }}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \quad \mathbf{A} \text { non-singular }
$$

- Degrees of freedom:
- 12 (3 translation, 9 entries of \mathbf{A})
- Invariants: parallel planes, ratios of volumes, plane at infinity

Hierarchy of Transformations in 3D (4) Projective Transformations

- Transformation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{x} \\
a_{21} & a_{22} & a_{23} & t_{y} \\
a_{31} & a_{32} & a_{33} & t_{z} \\
v_{1} & v_{2} & v_{3} & v
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Concise notation for transformation matrix:

$$
\mathbf{T}_{\text {projectivity }}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{v}^{\top} & v
\end{array}\right] \quad \mathbf{A} \text { non-singular }
$$

- Degrees of freedom:
- 15 (16 arbitrary matrix entries, up to scale)
- Invariants: Intersection points, tangency

Hierarchy of Transformations in 3D - Summary

$\left.\begin{array}{ll}\text { Projective } & 15 \mathrm{DOF} \\ \text { Affine } & 12 \mathrm{DOF} \\ \text { Similarity } & {\left[\begin{array}{cc}\mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\top} & v\end{array}\right]} \\ \mathbf{0}^{\top} & 1\end{array}\right]$

Lecture Outline

Part I: Basics of Transformations

Part II: Basics of Cameras

Pinhole Camera Model
Mapping between 3D world and 2D image by central projection

$$
(X, Y, Z)^{\top} \mapsto(f X / Z, f Y / Z, f)^{\top}
$$

$$
(X, Y, Z)^{\top} \mapsto(f X / Z, f Y / Z)^{\top}=(x, y)^{\top}
$$

Pinhole Camera Model

In homogeneous coordinates...

$$
\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Pinhole Camera Model

Mapping between 3D world and 2D image by central projection

$$
\begin{aligned}
\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)= & {\left[\begin{array}{lll}
f & & \\
& f & \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) } \\
& \mathbf{x}=\operatorname{diag}(f, f, 1)[\mathbf{I} \mid \mathbf{0}] \mathbf{X}
\end{aligned}
$$

Pinhole Camera Model

Origin of image plane is not necessarily at the camera center

$$
(X, Y, Z) \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)
$$

Pinhole Camera Model

Origin of image plane is not necessarily at the camera center

$$
\begin{gathered}
\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{x} \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \\
\mathbf{x}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X} \\
\mathbf{K}=\left[\begin{array}{lll}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right] \begin{array}{l}
\text { intrinsic camera } \\
\text { parameters matrix }
\end{array}
\end{gathered}
$$

Pinhole Camera Model

Camera center is not necessarily at the world coordinate system origin

$$
\begin{gathered}
\tilde{\mathbf{C}} \\
\begin{array}{c}
\text { camera center } \\
\text { in world coordinates }
\end{array} \\
\mathbf{X}_{\text {cam }}=\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{R} \tilde{\mathrm{C}} \\
0 & 1
\end{array}\right] \mathbf{X} \\
\begin{array}{c}
\text { 3D point in camera } \\
\text { coordinates }
\end{array}
\end{gathered}
$$

$\mathbf{x}=\mathrm{K}[\mathrm{I} \mid 0] \mathbf{X}_{\text {cam }}$ projection to image plane from camera coordinates
$\mathbf{x}=\mathrm{KR}[\mathrm{II}-\tilde{\mathrm{C}}] \mathbf{X} \quad$ projection to image plane from world coordinates

Pinhole Camera Model

Camera center is not necessarily at the world coordinate system origin

CCD Camera Model

Camera coordinates are mapped to pixels of the CCD chip m_{x}, m_{y} number of pixels per unit distance in camera coordinates

Finite Projective Camera Model

Both axes in camera coordinates need not have identical scaling
S skew parameter

$$
\begin{aligned}
& \mathbf{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right] \quad 5 \mathrm{DOF} \\
& \mathrm{P}=\mathbf{K} \mathbf{R}[\mathrm{I} \mid-\tilde{\mathrm{C}}] \quad 11 \mathrm{DOF}
\end{aligned}
$$

Camera Calibration

- Relating the ideal camera model to the properties of an actual physical device and determining the position and orientation of the camera w.r.t. the world coordinate frame ${ }^{1}$.
- Estimating the entries of $\mathbf{K}, \mathbf{R}, \tilde{\mathrm{C}}$
- Camera models with increasing generality:
- pinhole camera

9 DOF

- CCD camera

10 DOF

- finite projective camera
- In addition: lens distortion parameters

$$
\begin{aligned}
\mathbf{K}= & {\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right] } \\
& \mathrm{P}=\mathbf{K} \mathbf{R}[\mathrm{I} \mid-\tilde{\mathrm{C}}]
\end{aligned}
$$

Camera Calibration

Checkerboard pattern captured from multiple views (the checker sizes in the real world are known)

Semi-automatic measurements to find sizes in each of the images

- Linear and non-linear optimization for estimating camera parameters
- MATLAB calibration toolbox: http://www.vision.caltech.edu/bouguetj/calib_doc

Camera Calibration

Calibration results after optimization (with uncertainties):

Extrinsic parameters

Stereo Calibration

- Find the spatial relation between two cameras observing the same scene (stereo setup)
- For each orientation of the calibration pattern, capture corresponding left and right camera images
- Calibrate each camera separately, as before
- Perform stereo calibration using the result of separate calibration as an input

Calibrating the Kinect

- Depth and RGB images do not match exactly, there is an offset
- Stereo calibration for getting both images from the same camera perspective

RGB Image

Depth Image

Calibrating the Kinect

- Kinect has two cameras with standard optics
- RGB camera
- Infrared (IR) camera
- Infrared image is used internally for computing depth image, but is accessible through the API
- Checkerboard pattern is not visible in depth images, but visible in IR images

RGB Image

Infrared Image

Relating RGB and Depth Images

Stereo calibration gives \mathbf{R}, \mathbf{t} and $\mathbf{K}_{\mathrm{rgb}}, \mathbf{K}_{\mathrm{ir}}$.
Step 1: Back-project every 2D point from depth image into 3D space Step 2: Apply rigid transformation between two cameras to 3D points Step 3: Project every transformed 3D point into the RGB image

Relating RGB and Depth Images

Step 1: Back-project every 2D point from depth image into 3D space

- ToF data: depth d in meters for every pixel location $\mathbf{x}=(x, y)^{\top}$
- Desired data: 3D coordinates $\mathbf{X}=(X, Y, Z)^{\top}$ for every pixel

Depth Image

3D Point Cloud

Relating RGB and Depth Images

Step 1: Back-project every 2D point from depth image into 3D space

Apply inverse of IR camera projection to obtain 3D points:

$$
\begin{gathered}
\mathbf{x}_{\text {ir }}=\mathbf{P}_{\mathrm{ir}} \mathbf{X}=\mathbf{K}_{\mathrm{ir}}[\mathbf{I} \mid \mathbf{0}] \mathbf{X} \\
\left(\begin{array}{c}
x \\
y \\
w
\end{array}\right)=\left(\begin{array}{cccc}
f_{x} & 0 & c_{x} & 0 \\
0 & f_{y} & c_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right)=\left(\begin{array}{c}
f_{x} X+c_{x} Z \\
f_{y} Y+c_{y} Z \\
Z
\end{array}\right) \\
X=\frac{\left(x-c_{x}\right) Z}{f_{x}} \quad Y=\frac{\left(y-c_{y}\right) Z}{f_{y}} \\
\text { Inverse relation for } \mathbf{X} \text { and } \mathrm{Y}
\end{gathered}
$$

Relating RGB and Depth Images

Step 1: Back-project every 2D point from depth image into 3D space
For every depth pixel at location $\mathbf{x}=(x, y)^{\top}$ with depth d, compute a 3D point $\mathbf{X}=(X, Y, Z)^{\top}$ with coordinates:

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
\frac{\left(x-c_{x}\right) d}{f_{x}} \\
\frac{\left(y-c_{y}\right) d}{f_{y}} \\
d
\end{array}\right)
$$

$c_{x}, c_{y}, f_{x}, f_{y}$
Intrinsics of the IR (depth) camera

Relating RGB and Depth Images

Step 2: Apply rigid transformation between two cameras to 3D points Step 3: Project every transformed 3D point into the RGB image

$$
\mathbf{x}_{\mathrm{rgb}}=\mathbf{P}_{\mathrm{rgb}} \mathbf{X}=\mathbf{K}_{\mathrm{rgb}}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}
$$

- $\quad \mathbf{X}_{\mathrm{rgb}}$ are the coordinates of the projection of X into the RGB image
- look up color corrsponding to a given 3D point

Assignment 3

- Extend your application such that it can read out Kinect IR images
- Extend your application for saving IR and RGB images to bitmap files
- Familiarize yourself with the Matlab Camera Calibration Toolbox http://www.vision.caltech.edu/bougueti/calib doc/
- Read the examples (especially examples 1 and 5)
- Download the toolbox
- Try out the examples
- Perform stereo-calibration for your Kinect device
- Note that you cannot extract IR and RGB images simultaneously...

Outlook Assignment 4:

- Implement a 3D point cloud visualization for kinect depth data
- Add a feature to color the 3D points with the colors from the RGB camera

