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Lecture Outline"

!
!

Part I: Basics of Transformations!
!

Part II: Basics of Cameras!
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Outline Part I"

•  2D Transformations!

•  Homogeneous Coordinates in 2D!

•  Hierarchy of Transformations in 2D!

•  Hierarchy of Transformations in 3D!
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2D Transformations"

The basic building blocks of transformations are: 
!

•  Scaling (isotropic, non-isotropic)!
•  Rotation (around one rotation axis)!
•  Translation (motion along the two axes)!

Transformations are defined by their action on point coordinates.!
!
Notation:!
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2D Transformations – Scaling"
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Isotropic scaling: same scaling  
factor in both spatial dimensions!
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2D Transformations – Scaling"
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Non-isotropic scaling: different scaling  
factors in the two spatial dimensions!
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2D Transformations – Rotation"
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2D Transformations – Rotation"
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2D Transformations – Translation"
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2D Transformations"

Have you noticed we have two types of representations for the basic 
transformations seen so far?!
!
Scaling, Rotation: !Matrix-vector product"
!
!
!
Translation: !Sum of vectors"
"
"
"
"
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How to achieve a matrix-vector product form for all types of transformations?!



Outline Part I"

•  2D Transformations!

•  Homogeneous Coordinates in 2D!

•  Hierarchy of Transformations in 2D!

•  Hierarchy of Transformations in 3D!
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Homogeneous Coordinates in 2D"

•  Write a 2D point in homogeneous coordinates:!

 
!

•  Then, translation can easily be expressed as a matrix-vector product:!
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How to achieve a matrix-vector product form for all types of transformations?!



Homogeneous Coordinates in 2D"

•  Rotation in homogeneous representation:!

!
•  Combined transformations (here: rotation and translation):!

Kinect Lab Course - Transformations and Cameras! 13!




x�

y�

1



 =




cos θ −sin θ 0
sin θ cos θ 0

0 0 1








x
y
1








x�

y�

1



 =




cos θ −sin θ tx
sin θ cos θ ty

0 0 1








x
y
1



 =




xcos θ − ysin θ + tx
xsin θ + ycos θ + ty

1







2D Projective Space "

!

•  Points in 2D Euclidean space are represented by Cartesian coordinates!

•  Points in 2D Projective space are represented by Homogeneous coordinates:!
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When dealing with points represented in homogeneous coordinates, we are  
working in a Projective space.!



2D Projective Space "
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Point in Euclidean 2D space! Point in Projective 2D space. 
 
All points on the orange line represent the 
same point. A homogeneous vector in 2D 
projective space represents an 
equivalence class of points.!

z!

y!

p = (x,y,1)!
x!

k(x,y,1)!

x!

y!

p = (x,y)!

z = 1!

Projective Plane!



Points and Lines in 2D Projective Space"

Properties of points"

•  A 2D point               has the homogeneous representation                  . !

•  The homogeneous vector                    with w≠0 represents the point                      .!

•  For any non-zero k,                    and                       represent the same point.!
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Points and Lines in 2D Projective Space"

Properties of lines"

•  A line                                  has the homogeneous representation                         .!

•  A point      lies on a line     if and only if                   .!

•  Two lines     and     intersect in the point          !           .!

•  The line joining the two points      and      is                       .!
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Points and Lines in 2D Projective Space"

Special points and lines"

•  Points with 3rd coordinate zero                   are called points at infinity.!

•  All points at infinity lie on the line at infinity                             .!

•  Parallel lines intersect at infinity.!
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(x, y, 0)�

l∞ = (0, 0, 1)�

In projective space, all lines intersect in a point, even parallel lines.!

l�∞(x, y, 0) = (0, 0, 1)�(x, y, 0) = 0



Outline Part I"

•  2D Transformations!

•  Homogeneous Coordinates in 2D!

•  Hierarchy of Transformations in 2D!

•  Hierarchy of Transformations in 3D!
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Hierarchy of Transformations in 2D"

•  Classification of transformations in terms of quantities or properties that are 
invariant (left unchanged) by the transformation!

•  Hierarchy: Starting from most specialized type of transformation, successively 
remove invariants to get more general types of transformations 
 !
!

!
!

•  Containment relation from general to specialized, e.g.: affine transformations 
have all properties of projective transformations, plus additional ones.!
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Most general:!
!
 !
!
 !
  

Most specialized:!

Projective transformations!
!
Affine transformations!
!
Similarity transformations!
!
Euclidean transformations!



Hierarchy of Transformations in 2D:  
Euclidean Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  3 (1 rotation, 2 translation) 

!
•  Invariants: length, area, angles!
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Hierarchy of Transformations in 2D:  
Similarity Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  4 (1 rotation, 2 translation, 1 isotropic scaling) 

!
•  Invariants: ratio of lengths, angles, parallel lines!
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Hierarchy of Transformations in 2D:  
Affine Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  6 (2 translation, 4 entries of A) 

!
•  Invariants: parallel lines, ratios of areas, line at infinity !
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Hierarchy of Transformations in 2D:  
Affine Transformations"

Affine transformations geometrically consist of two components:!
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A = R(θ)R(−φ)
�

λ1 0
0 λ2

�
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Rotation! Non-isotropic Scaling!



Hierarchy of Transformations in 2D: 
Projective Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  8 (9 arbitrary matrix entries, up to scale) 

!
•  Invariants: Intersection points, tangency, cross-ratios!
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Hierarchy of Transformations in 2D – Summary"
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Projective "8 DOF!
!
!
!
Affine " "6 DOF!
!
!
!
Similarity "4 DOF!
!
!
!
Euclidean "3 DOF!
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•  Affine Transformations:!

Action of Transformations in 2D on Points at Infinity"
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Point at infinity, 
e.g. intersection !

of blue lines!

Mapped by affine 
transformation to another 

point at infinity!



•  Projective Transformations:!

Mapped by projective 
transformation to a finite 
point (vanishing point)!

Action of Transformations in 2D on Points at Infinity"
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Point at infinity, 
e.g. intersection !

of blue lines!

Only projective transformations can make points at infinity finite points.!



Outline Part I"

•  2D Transformations!

•  Homogeneous Coordinates in 2D!

•  Hierarchy of Transformations in 2D!

•  Hierarchy of Transformations in 3D!
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Homogeneous Coordinates in 3D"
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•  Write a 3D point in homogeneous coordinates:!

 
!

•  3D projective space: properties analogous to 2D homogeneous representation!
•  All types of transformations (scaling, translation, rotation, etc.) can be written 

as a matrix-vector product!
•  Several transformations can be composed into one transformation matrix!

How to achieve a matrix-vector product form for all types of transformations?!
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Hierarchy of Transformations in 3D (1):  
Euclidean Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  6 (3 rotation, 3 translation) 

!
•  Invariants: volume, angles!
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Hierarchy of Transformations in 3D (2):  
Similarity Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  7 (3 rotation, 3 translation, 1 scaling) 

!
•  Invariants: angles!
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Hierarchy of Transformations in 3D (3):  
Affine Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  12 (3 translation, 9 entries of A) 

!
•  Invariants: parallel planes, ratios of volumes, plane at infinity !
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Hierarchy of Transformations in 3D (4) 
Projective Transformations"

•  Transformation:!

•  Concise notation for transformation matrix:!

•  Degrees of freedom: !
–  15 (16 arbitrary matrix entries, up to scale) 

!
•  Invariants: Intersection points, tangency!
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Hierarchy of Transformations in 3D – Summary"
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Projective "15 DOF!
!
!
!
Affine " "12 DOF!
!
!
!
Similarity "7 DOF!
!
!
!
Euclidean "6 DOF!
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Lecture Outline"

!
!

Part I: Basics of Transformations!
!

Part II: Basics of Cameras!
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Pinhole Camera Model"
Mapping between 3D world and 2D image by central projection!
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Pinhole Camera Model"
In homogeneous coordinates…!
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Pinhole Camera Model"
Mapping between 3D world and 2D image by central projection!
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Pinhole Camera Model"
Origin of image plane is not necessarily at the camera center!
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principal point 
(perpendicular intersection point of  

principal axis and image plane) 



Pinhole Camera Model"
Origin of image plane is not necessarily at the camera center!
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Pinhole Camera Model"
Camera center is not necessarily at the world coordinate system origin!

Xcam =
R !R !C
0 1

"

#
$
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'
'
X

3D point in camera 
coordinates 

x =K I | 0[ ]Xcam

x =KR I |! !C"# $%X

camera center 
in world coordinates 

projection to image plane from camera coordinates 

projection to image plane from world coordinates 

!Xcam = R !X- !C( )
Points with a tilde are in 
non-homogeneous notation! 



Pinhole Camera Model"
Camera center is not necessarily at the world coordinate system origin!
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CCD Camera Model"

mx,my number of pixels per unit distance in camera coordinates  

4 DOF  

P =KR I |! !C"# $% 10 DOF  
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Camera coordinates are mapped to pixels of the CCD chip!
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Finite Projective Camera Model"

s skew parameter  
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11 DOF  
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Both axes in camera coordinates need not have identical scaling!
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Camera Calibration"
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•  Relating the ideal camera model to the properties 
of an actual physical device and determining the 
position and orientation of the camera w.r.t. the 
world coordinate frame1.!

•  Estimating the entries of!

•  Camera models with increasing generality:!
–  pinhole camera ! !  9 DOF!
–  CCD camera ! !10 DOF!
–  finite projective camera !11 DOF!

•  In addition: lens distortion parameters!

1 http://www.dis.uniroma1.it/~iocchi/stereo/calib.html!

K,R, !C



Camera Calibration"
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Checkerboard pattern captured 
from multiple views (the checker sizes 

in the real world are known) 

Semi-automatic measurements to  
find sizes in each of the images 

•  Linear and non-linear optimization for estimating camera parameters 
•  MATLAB calibration toolbox: http://www.vision.caltech.edu/bouguetj/calib_doc!

Images from http://www.vision.caltech.edu/bouguetj/calib_doc!



Camera Calibration"

•  sdfsdf!
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Stereo Calibration"

•  Find the spatial relation 
between two cameras 
observing the same scene 
(stereo setup)!

•  For each orientation of the 
calibration pattern, capture 
corresponding left and right 
camera images!

•  Calibrate each camera 
separately, as before!

•  Perform stereo calibration 
using the result of separate 
calibration as an input!
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Calibrating the Kinect"

•  Depth and RGB images do not match exactly, there is an offset!
•  Stereo calibration for getting both images from the same camera perspective!
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RGB Image! Depth Image!



Calibrating the Kinect"

•  Kinect has two cameras with standard optics!
–  RGB camera!
–  Infrared (IR) camera!

•  Infrared image is used internally for computing 
depth image, but is accessible through the API!

•  Checkerboard pattern is not visible in depth 
images, but visible in IR images!
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Infrared!
Projector!

RGB!
Camera!

Infrared!
Camera!

RGB Image!

Infrared Image!



Relating RGB and Depth Images"

Stereo calibration gives         and                  .!

Step 1: Back-project every 2D point from depth image into 3D space!
Step 2: Apply rigid transformation between two cameras to 3D points!
Step 3: Project every transformed 3D point into the RGB image!
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RGB"

IR"

R, t 3D Points!

Back-projection using!

Projection using!

R, t

Relative transformation!
between rigidly  

connected cameras!



Relating RGB and Depth Images"

Step 1: Back-project every 2D point from depth image into 3D space!

•  ToF data: depth d in meters for every pixel location !
•  Desired data: 3D coordinates                          for every pixel !
!
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Depth Image! 3D Point Cloud!

X = (X,Y, Z)�
x = (x, y)�



Relating RGB and Depth Images"

Step 1: Back-project every 2D point from depth image into 3D space!
!
Apply inverse of IR camera projection to obtain 3D points:!
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Relating RGB and Depth Images"
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!
For every depth pixel at location                   with depth d, !
compute a 3D point                           with coordinates: !

x = (x, y)�

X = (X,Y, Z)�

Intrinsics of the IR (depth) camera!

Step 1: Back-project every 2D point from depth image into 3D space!



Relating RGB and Depth Images"

Step 2: Apply rigid transformation between two cameras to 3D points!
Step 3: Project every transformed 3D point into the RGB image!
!
!
!
•             are the coordinates of the  

projection of X into the RGB image!
•  look up color corrsponding to  

a given 3D point!
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Assignment 3"

•  Extend your application such that it can read out Kinect IR images!
•  Extend your application for saving IR and RGB images to bitmap files!
•  Familiarize yourself with the Matlab Camera Calibration Toolbox 

http://www.vision.caltech.edu/bouguetj/calib_doc/!
–  Read the examples (especially examples 1 and 5)!
–  Download the toolbox!
–  Try out the examples!

•  Perform stereo-calibration for your Kinect device!
–  Note that you cannot extract IR and RGB images simultaneously…!

"
Outlook Assignment 4:"
•  Implement a 3D point cloud visualization for kinect depth data!
•  Add a feature to color the 3D points with the colors from the RGB camera!
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