# Navigation and Robotic in Surgery

**R. Burgkart** 

Klinik für Orthopädie und Unfallchirurgie, TUM (Direktor: Prof. Dr. R. Gradinger)

# Outline

- Basics of Navigation/Robotic
- Data as Prerequisite
- Pre/Intraoperative Planning
- Visualization
- Pros & Cons



#### Why Navigation / Robots?

modern imaging modalities (CT, MRI,...)



### **Navigation / Robots**

Lack of intraoperativ knowledge transfer





#### Image-based Intraoperativ Navigation Systems

**Therapeutic Object (Patient)** 

Virtual Object (CT data,...)

**Navigation System** 



#### **Computer assisted Navigation**





#### Image-based Intraoperativ Navigations Systems (Classification of Navigation/Robotic Systems)

# **Passive Systems**

**Semiactive Systems** 

**Active Systems** 





#### Image-based Intraoperativ Navigations Systems

**Passive Systems** 

# **Semiactive Systems**

**Active Systems** 



Robot assisting, slide holding drill manually moved





#### Image-based Intraoperativ Navigations Systems

**Passive Systems** 

**Semiactive Systems** 

**Active Systems** 





Workflow for a Intervention/Surgery using Navigation

# When preoperative imaging is available:

# Additional possibilities to do preoperative planning.

# Use in Orthopedics

**Intraoperativ Navigation Systems** 

Spinal orthopedics Acetabulum navigation (for replacement) Implantation in femure Anterior cruciate ligament reconstruction Biopsy/Resection of bone tumors



# Improvement of accuracy Reduction of operation trauma Reduction of operation time Reduction of complications during operation Improvement of long-term results

### Screw Placement - Spine

#### **Image-based Intraoperativ Navigation Systems**







#### Rhabdomyosarcoma (cancer cells thought to arise from skeletal muscle progenitors)

![](_page_12_Picture_2.jpeg)

Improvement of accuracy

Reduction of trauma through operation

Reduction of operation time

**Reduction of complications during operation** 

Improvement of long-term results

![](_page_13_Picture_5.jpeg)

Rhabdomyosarcoma

# **Minimal Invasive**

![](_page_14_Picture_1.jpeg)

Improvement of accuracy
 Reduction of trauma through operation
 Reduction of operation time
 Reduction of complications during operation
 Improvement of long-term results

**Osteoidosteom li Scapula** 

### Drill Channel (Anterior cruciate ligament reconstruction)

### **Image-based Intraoperativ Navigations Systems**

sagitta

![](_page_15_Picture_2.jpeg)

Improvement of accuracy
 Reduction of trauma through operation
 Reduction of operation time
 Reduction of complications during operation
 Improvement of long-term results

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

#### Hypernephrommetastase re. Os llium

![](_page_16_Picture_3.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

Improvement of accuracy
 Reduction of trauma through operation
 Reduction of operation time
 Reduction of complications during operation
 Improvement of long-term results

### Robot

# Use for hip surgery

#### Chirurg läßt den Roboter fräsen

Neue Technik verbessert Chancen bei Operationen an Gelenken

#### Surgeon let's Robot mill

New Technology improves Prospects in Joint Surgery

![](_page_18_Picture_6.jpeg)

#### THEMENDER ZEIT BERICHTE

Computergestützte Chirurgie

### "Robodoc" assistiert bei Hüftgelenksoperationen

<u>Computer assisted Surgery</u>

"Robodoc" assists during Acetabulum Surgery

## Use during Acetabulum Operations

### Milling of the femur diaphysis

# \* High Accuracy \* tight fit of prothesis in cortical bone (form fit)

![](_page_19_Picture_3.jpeg)

# Use during Acetabulum Operations

**Problems: \*** Form fit causes physiological stiffness of the diaphysis \* Distal increased forces => stress shielding proximal => Loosening! stem insertion manually

![](_page_20_Figure_2.jpeg)

### Robot

## **Use for hip surgery**

![](_page_21_Picture_2.jpeg)

#### **Experiences:**

Improvement of accuracy
Reduction of trauma through operation
Reduction of operation time
Reduction of complications during operation
Improvement of long-term results

## Problem

# **Sterility**

![](_page_22_Picture_2.jpeg)

## Problem

# Human – Machine Interaction

![](_page_23_Picture_2.jpeg)

### Problem

# Eye – Hand Coordination

![](_page_24_Picture_2.jpeg)

Requirements concerning Computer Assisted Technologies (Industry and Engineering)

- Improved reproducible precision to reduce rejections
- Saving time in the production flow
- Simple and secure handling
- Staff savings
- General reduction of costs
- Quick amortization of the investment

# Requirements concerning Computer Assisted Technologies (Surgical Medicine)

- Exact preoperative planning
- Improved, reproducible precision
- Minimizing the operation trauma
- Secure handling
- Sterile handling
- Reduction of perioperative (pre/postoperative & recovery) complications
- Successful clinical controlled studies (according guidelines and abort criteria given out by an ethic commission)

Requirements concerning Computer Assisted Technologies (Hip/Acetabulum Surgery)

- Exact preoperative planning
- Precise preparation of the implant joint (femur diaphysis stem and acetabulum)
- Precise reproducible placement of the implants
- Reduction of the operation trauma
- Reduction of the operation time
- Reduction of the peri/intraoperative complications
- Improvement of long-term results (needs to be proven in studies)

Data/Imaging as Prerequisite for Navigation Systems

- No "Imaging"
- C-Arm based Navigation
- C-Arm and CT/MRI based
- CT based Navigation
- MRI based Navigation
- Multimodal (...+ PET, MRA etc.) Navigation

#### **Kinematics + Geometry Data navigated**

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

#### e.g.: KTEP

![](_page_29_Picture_4.jpeg)

### **Kinematics + Geometry Data navigated**

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

# **Imaging Modalities**

- X-ray - Sonographie - CT - MRI - MRA (magnetic resonance angiography) - SPECT - PET

![](_page_31_Picture_2.jpeg)

X-ray

![](_page_32_Picture_1.jpeg)

Osteochondrom dist. Femur

# **C-Arm based navigated**

![](_page_33_Picture_1.jpeg)

# why a mobile C-arm?

For German Professional Orthopaedic Surgeons the most important tool for <u>intraoperative</u> visualization:

#### benign tumor: Osteoidosteoma

to find a target:

≻ tumors

#### joint perforations: 8 – 62 %

![](_page_34_Picture_6.jpeg)

![](_page_34_Picture_7.jpeg)

Walters (1980), Riley (1990), Gonzales (1998), Loder (2000)

![](_page_34_Picture_9.jpeg)

3250 operations

with C-arm

Epiphyseolysis cap. fem.

# why a mobile C-arm?

For German Professional C the most important tool for

#### to control:

- > fracture after reposi
- Iuxation control / art
- > puncture

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

- > endoprotheses and revisions
- > correction osteotomies
- vascular imaging •

e.g. in case of vascularized graft
#### why a mobile C-arm?

#### benefits for patient and surgeon:

- > minimal invasive
- > always available
- intraoperative control
- high precision
- ➢ easy
- time efficient



# Sonography





## **Computer Tomography**





- Optimal bone detection
- True to scale (no distortion)
- easy to be segmented

Hypernephrommetastase re. Os Ilium

## Magnetic Resonance Tomography (MRT) Magnetic Resonance Imaging (MRI)



## **Magnetic Resonance Imaging**





axial

#### coronar

## **Magnetic Resonance Imaging**





schräg coronar



# **MR-Angiography**



## SPECT

#### Single Photon Emission Computer Tomography



#### PET

#### Positronen Emission Tomography



Data/Imaging as Prerequisite for Navigation Systems

- No "Imaging"
- C-Arm based Navigation
- C-Arm and CT/MRI based
- CT based Navigation
- MRI based Navigation
- Multimodal (...+ PET, MRA etc.) Navigation



#### **CT based Navigation**







| Substance | HU           |  |  |  |
|-----------|--------------|--|--|--|
| Air       | -1000        |  |  |  |
| Fat       | -120         |  |  |  |
| Water     | 0            |  |  |  |
| Muscle    | +40          |  |  |  |
| Contrast  | +130         |  |  |  |
| Bone      | +400 or more |  |  |  |

#### **MRI based Navigation**

# **Problems:** - Segmentation

- Matching
- Modality based distortion



















Pedicel screw
K-wire fixation
Specimen biopsy
KTEP

- Pfannendachosteotomie

Pedicel screw
K-wire fixation
Specimen biopsy
KTEP
Pfannendachostec

DirectionScrew length



- Pedicel screw - K-wire fixation - Specimen biopsy - KTEP - Pfannendachosteotor
  - Direction
  - Minimal distance to joint



Pedicel screw
K-wire fixation
Specimen biopsy - Direction - Target
KTEP
Pfannendachosteotomie





- Pedicel screw - K-wire fixation - Specimen biopsy - Cut height - KTEP - Cut planes - Pfannendachosteolmplantsize Implant positioning



- Pedicel screw - K-wire fixation - Specimen biopsy - KTEP - Cut heights - Pfannendachosteoromie onle agment slewability Fragment positioning

- Osteosynthesis











## Visualization



## Visualization

| - virtual | - 2D<br>orthogonal<br>consecutive<br>multiplanar<br>- Pseudo 3D<br>- 3D | <ul> <li>Monitor</li> <li>Head Mounted Display</li> <li>AR</li> </ul> |                                         |                                                    |
|-----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|
|           |                                                                         | •                                                                     | - unseg<br>- point/<br>- geom<br>- segm | gmented<br>line reduction<br>etric bodies<br>ented |

## - "rapid prototyping"

#### - 2D

orthogonal consecutive multiplanar - Pseudo 3D

- 3D





#### - 2D

orthogonal consecutive multiplanar - Pseudo 3D - 3D



www.Dresden3D.com







#### augmented reality







### Holography



- unsegmented
- Point/Line reduction
- Geometric bodies
- segmented











Project VOXEL-MAN based on data from "visible human"










# rapid prototyping











Pros & Cons

# Visualization

 multiplanar
 flexible directions of view (e.g. operative view)
 Improved clarity (e.g. after colorful segmentation of tumor including vessels/nervs)



# **Data Fusion**

- information increase due to multimodal imaging
- integration of functional findings (statements)

# Virtual 3D Modeling

- optimal spatial representation
- biomechanical evaluation
- optimized 3D planning
- check of contact, osteosysthesis planning etc. ...



# Planning

preop feasibility check
virtual positioning of the implant
optimized choose of implant

# Accuracy

- exact intraoperative realization
- reproducibility (scientific studies)
- complication reduction
- biomech. optimization of implantat position
- influence on long-term results?!

# **Minimal Invasive**

small incisions
transdermal methods
minimal WT-mobilization
minimal wound surface
complication reduction

#### **Documentation**

Preoperative planning documents
intra- & postoperative documents (e.g. screen shots of operation steps)
quality management

## **Radiation Reduction**

for OR stafffor patients

# **Tool for Education**

- improved training through virtual simulations (e.g. pedicular srew postitioning, planning, in vitro OR etc.)
- extended intraoperative examination

### **Future Pros**

biomechanical modeling
collision animation
telemedicine



# Training Curve new "tools" "2 level" surgery (virtual - real) conventional OR-equipment essential (malfunction, plausibility)

# **Extra OR Time**

- increased blood loss
- increased inflammation risk
- Increased thrombosis rate

# **No Haptic Feedback**

tissue properties not taken into account with active robotics
bone quality by nail implant
pedicular drilling



# **Tool Limitations**

# minimal milling head diameter for HTEP with active robots limited prosthesis design







# **Bigger Incisions**

- e.g. robot need linearer access to femur diaphysis
- increased muscle debonding/ablation
- higher incidence of muscle insufficiencies

# **Increased Radiation Exposure**

# for patients: often preoperative CT nessecary additional examinations: PET, SPECT



# Second Operations (Zweit-Op ´s)

#### - e.g. pin - method



# Psychology

# 

# uncritical/blind trust "operating virtual image"

required space in OR
Sterility
Security
Costs



## Conclusions

meaningful innovation on many levels
main pros: optimized visualization,
precission, reproducibility

## Conclusions

conscious handling necessary together with consequent improvement
for benefit analysis: targeted prospective studies in selected scientific centers



# Thank you

#### **Technical University Munich /Germany**

