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  “Digital copy” of real object 

  Allows us to 
-  Inspect details of object 
-  Measure properties 
-  Reproduce in different material 

  Many applications 
-  Cultural heritage preservation  
-  Computer games and movies 
-  City modelling 
-  E-commerce 
-  3d object recognition/scene analysis 

3D Models 

Some slides are taken from: http://carlos-hernandez.org/cvpr2010/index.html 
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Applications: cultural heritage 

SCULPTEUR European project  
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Domain Series Domain VIII Crouching 
 1999 Mild steel bar 81 x 59 x 63 cm  

Block Works Precipitate III 2004  
Mild steel blocks 80 x 46 x 66 cm  

Applications: art 
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Applications: structure engineering 

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland  
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Applications: computer games 
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SCULPTEUR European project  

medical, industrial and cultural heritage indexation 

?    ? 

  ? ?    ? 
    ? 

?   ? 
   ? 

Applications: 3D indexation 
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1186 fragments 

Applications: archaeology 
  “forma urbis romae” project 

                      

Fragments of the City: Stanford's Digital Forma Urbis Romae Project  
David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy  
Proc. Third Williams Symposium  
on Classical Architecture,  
Journal of Roman Archaeology  
supplement, 2006. 
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Applications: large scale modelling 

                      

[Pollefeys08] [Furukawa10] 

[Goesele07] [Cornelis08] 
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Scanning technologies 

  Laser scanner, coordinate measuring machine 
-  Very accurate 
-  Very Expensive 
-  Complicated to use 

Minolta 

Contura CMM 
“Michelangelo” project 
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Scanning technologies 
Structured light 

[Zhang02] 
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3D shape from photographs 
“Estimate a 3d shape that would generate the 
input photographs given the same material, 

viewpoints and illumination” 

material illumination 

viewpoint 

geometry    image 

? 
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Real Replica 

3d shape from photographs 
“Estimate a 3d shape that would generate the 
input photographs given the same material, 

viewpoints and illumination” 
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3d shape from photographs 
Appearance strongly depends on the material and lighting 

rigid deforming 

textured 

textureless 
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3d shape from photographs 
⇓ 

textureless 

textured 

rigid deforming 

Appearance strongly depends on the material and lighting 

No single algorithm exists dealing with any type of scene 
⇓ 
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Photograph based 3d reconstruction is: 
  practical 
  fast 
  non-intrusive 
  low cost 
  Easily deployable outdoors 
  “low” accuracy 
  Results depend on material properties 

3D shape from photographs 
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Image acquisition 

Multi-view reconstruction pipeline 

Camera pose 3d reconstruction 
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Image acquisition 

  Studio conditions 
controlled environment 

  Uncontrolled environment 
hand-held 
unknown illumination 

  Internet 
Unknown content 

•  Video 
 small motion between frames 
 huge amount of data 
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Studio image acquisition 
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Outdoor image acquisition 
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Internet image acquisition 

... 
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Video image acquisition 
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Image acquisition 

Multi-view reconstruction pipeline 

3d reconstruction Camera pose 
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Camera pose 

•  Robotic arm 

•  Fiduciary markers 

•  Structure-from-Motion 

•  SfM from unorganized 
photographs 

Large scenes 

Small Scenes 
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Robotic arm 
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Fiduciary markers 

•  ARToolkit 

•  Bouguet´s MATLAB Toolbox 

•  Robust planar patterns 

www.vision.caltech.edu/bouguetj/calib_doc/ 
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Input sequence 2d features 2d track 3d points 

Structure from motion 
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Motion estimation result 
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•  Image clustering 

•  Pose initialization 

•  Bundle-adjustment 

Structure-from-Motion from 
unordered image collections 

[Brown05, Snavely06, Agarwal09] 

phototour.cs.washington.edu/bundler 
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Multi-view reconstruction pipeline 

3d reconstruction = 3d segmentation 

Image acquisition, 
camera pose 

3d visual hull or 
photo-consistency 

from images 

3d surface from 
3d photo-consistency 

Image acquisition Camera pose 3d reconstruction 
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Problem Statement 

…how can we automatically build  
a 3D model of it ? 

Given several calibrated views of an object ... 



32 

The Middlebury datasets 
- Provides two datasets: “Temple” and “Dino” 

 - Images corrected for radial distortion. 
 - Camera calibration ( intrinsics & extrinsics) 

- Three versions for each dataset 
 - Full hemisphere ( > 300 images) 
 - Ring (48 images) 
 - Sparse Ring (16 images) 

- They keep Ground Truth to evaluate results. 



33 

Representing Shape 
Implicit Explicit 

Represent the surface as the 0 level-set of a 
scalar function f: 

 f(x) = 0    surface 
 f(x) > 0    inside 
 f(x) < 0    outside 

Discretize the interface itself with a mesh: 

 M = ( V, T ) 
 V are the vertices 
 T are the triangles 
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Representing Shape 
Implicit Explicit 

- lightweight 
representation. 
- easy to render on the 
GPU. 
- versatile:  

 * adaptive sampling 
 * open meshes 
 * non manifoldness

- heavy in memory. 
In 2D: hold Nx*Ny scalar values 
In 3D: hold Nx*Ny*Nz scalar 
values 
- possible refinements: 

 - octrees 

- uniformity of sampling. 

- Can maintain point 
correspondence. 
(Lagrangian) 
- difficult to preserve 
correct sampling. 

 * non uniformity 
 * non manifoldness 

- Eulerian point of view. 

- handles naturally changes of topology. 

Dealing with moving interfaces ( in time or iterations  
of an algorithm) 

3D Mesh courtesy of INRIA 
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From Implicit Surfaces to Meshes 
The main idea: 
  From a given implicit surface create a triangular mesh that 
approximates this surface 

  Compute normals of the mesh surface at each vertex of 
created triangles 

  Use marching cubes algorithm  
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Marching Cubes Algorithm 

Implicit Explicit 

Marching Cubes  

Voxelization 

2D Marching cubes: 16 cases 
3D Marching cubes: 256 cases 

  Assign zero to vertices  outside the surface 
  Assign one to vertices inside the surface 
  Surface intersects squares/cubes at places where the surface 
passes, i.e. between vertices that are inside and outside the 
implicit surface  
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Reconstruction I 
Shape From Silhouette 
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SFS - Principle 
The visual hull is the shape maximally consistent with the silhouettes 
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SFS 
Does it converge to the true 
shape as we add more and more 
cameras ? 
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SFS - concavities 
The visual hull cannot capture concavities not visible in the 
silhouettes 
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SFS – concavities 
This can lead to severe reconstruction artifacts such as erroneous 
additional connected components.  
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SFS – silhouette errors 
All the previous slides were considering perfect silhouettes. 
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SFS – Volumetric Approach 
- Define the scene's bounding box and discretize it. 
- Evaluate for each voxel: “am I in the object ?”  
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SFS – Octree speed up 
In the integral images of each camera, 
these 4 points gave the same value. 
→ do not check next level  
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SFS – Polyhedral Approach 
PROS : 
- silhouettes are backprojected to cones which are 
intersected in 3D. 
- Good performance in real-time systems 
- Does not suffer from discretization artifacts. The 
precision is only limited by the resolution of 
silhouette images. 

CONS : 
- Involved implementation. 
- Problematic when silhouettes contain errors 
- Does not scale very well with the number of 
images. 
- Gives non uniformly sampled geometry 

Figure taken from GrImage project website (http://grimage.inrialpes.fr) 
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SFS - Summary 
PROS: 
- Only silhouette images are required 
- No need for correspondences or texture 
- Robust 
- Efficient and easy to implement 

CONS: 
- Cannot recover concavities not seen in the silhouette 
images 
- Artifacts for complex scenes and low number of cameras 
- Needs calibrated input images 
- Silhouettes have to be available ( difficult outside of 
controlled studio environments) 
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Beyond the Visual Hull 

Visual Hull Photoconsistent surface 
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Reconstruction II 
Photoconsistency 
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Lambertian assumption 
- Far away light source 
- small piece of surface 

Question 1: 
- How much light power does it receive ? (Surface Irradiance) 

 → proportional to cos( incident ray, normal)  
Question 2: 
- How much light power gets reflected ? Where ? 

The Lambertian model (roughly) says: 
- All these cameras are going to see the same 
color, no matter where they are looking from. 
(i.e the surface elements equally reflects in all 
directions)  

Are not modeled:  
- Specularities ( lat. “Speculum” - mirror) 
- Cast shadows, ambient occlusion (important when matching across time) 
- More complex BRDF (Bidirectional Reflectance Distribution Function) 
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Space Carving 
One of the earliest methods. 

- Initialize a volume with a superset of the true scene 
- Repeat until convergence : 

 - Project a surface voxel into all images in which it is visible. 
 - Remove if not photoconsistent. 

The photoconsistent surface 
is called the photo hull and 
is the tightest possible bound 
on the true scene 
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Space Carving 
Problem: occlusions 

- The photoconsistency is only evaluated in the views in which a voxel is 
visible 
- When a voxel is deleted new voxels become visible and the visibility has 
to be updated 
- This is efficiently done using a multi-pass plane-sweep algorithm. 
Scene is swept with a plane in each of the six principle directions and only 
cameras on one side of the plane are considered 

Figure taken from: K. Kutulakos and S. Seitz. A Theory of Shape by Space Carving, IJCV 2000 
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Space Carving - Limitations 
- The photohull is only guaranteed to be the tightest superset 
of the true reconstruction. 
- If a voxel is wrongly removed it can lead to the removal of 
other correct parts of the object. 
- The choice of the photoconsistency measure is critical. 

Figure taken from: K. Kutulakos and S. Seitz. A Theory of Shape by Space Carving, IJCV 2000 



Space Carving: Limitations 
- Needs calibrated input images 
- Problematic for non-lambertian objects 
- No regularization (e.g. smoothing) 

- The Photo Hull is only a superset of the true shape 
- Greedy approach 

 - Removed voxels cannot be re-added to the 
reconstruction 
- Accuracy limited by voxel resolution 

 - Voxels should be small 
 - Discretization artifacts 
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Space Carving: Results 

54 Figure taken from: S. Seitz and C. Dyer, Photorealistic scene reconstruction by voxel coloring. IJCV 1999 



Space Carving: Results 

55 Figure taken from: K. Kutulakos and S. Seitz. A Theory of Shape by Space Carving, IJCV 2000 
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Photo-consistency of a 3d point 
Photo-consistent point  

≈ 
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Photo-consistency of a 3d point 
  Non photo-consistent point  

≠ 
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Photo-consistency of a 3d patch 
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Window comparison:  
Normalized Cross Correlation 

square window 

homography-based window 

Image 31 

Image 34 

Image 6 Image 5 Image 4 

Image 3 Image 2 Image 1 

Image 0 Image 35 

Image 33 Image 32 
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Challenges of photo-consistency 

•  Camera visibility 

•  Failure of comparison metric 
–  repeated texture 

–  lack of texture 

–  specularities 
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Multi-view stereo algorithms 
Comparison and evaluation: 

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, 
S. Seitz et al., CVPR 2006, vol. 1, pages 519-526. 

Quick history of algorithms: 
Representing stereo data with the Delaunay triangulation,  

O. Faugeras et al., Artificial Intelligence, 44(1-2):41-87, 1990. 

A multiple-baseline stereo, 
M. Okutomi and T. Kanade, TPAMI, 15(4):353-363, 1993. 

Object-centered surface reconstruction: Combining multi-image stereo and shading,  
P. Fua, Y. Leclerc, International Journal of Computer Vision, vol. 16:35-56, 1995. 

A portable three-dimensional digitizer, 
Y. Matsumoto et al., Int. Conf. on Recent Advances in 3D Imaging and Modeling, 197-205, 1997 

Photorealistic Scene Reconstruction by Voxel Coloring, 
S. M. Seitz and C. R. Dyer, CVPR., 1067-1073, 1997.  

Variational principles, surface evolution, PDE's, level set methods and the stereo problem, 
O. Faugeras and R. Keriven, IEEE Trans. on Image Processing, 7(3):336-344, 1998. 
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Multi-view stereo algorithms 
Comparison and evaluation: 

A Comparison and Evaluation of Multi-View Stereo Reconstruction 
Algorithms, 
S. Seitz et al., CVPR 2006, vol. 1, pages 519-526. 

http://vision.middlebury.edu/mview/ 

Recently many new algorithms 
Very good accuracy & 

completeness 

Almost all deal with small number 
of images (~100) 
main exception [Pollefeys08] 

Offline algorithms, no feedback 
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Different approaches* 

Variational 
Region Growing 

Explicit depth-map fusion 

[Kolev08] 
[Campbell08] 
[Vogiatzis07] 
[Hernandez04] 

[Furakawa07] 
[Habecke07] 
[Goesele07] 
[Lhuillier02] 

[Yoon10] 
[Gargallo07] 
[Pons05] 
[Jin05] 
[Keriven98] 

[Bradley08] 
[Pollefeys08] 
[Kolmogorov02] 

[Strecha06] 
  Local                                Global 

3d Delaunay 
[Labatut07] [Vu09] 

*Disclaimer: classifying 3d algorithms is challenging 
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Best flexible algorithms 
Region growing Depth-map fusion 

Starts from a cloud of 3d points, 
and grows small flat patches 
maximizing photo-consistency 

Fuses a set of depth-maps computed 
using occlusion-robust photo-
consistency 

Provides best overall results due 
to a plane-based photo-
consistency 

Elegant pipeline 
Plug-n-play blocks 
Easily parallelizable 

Many tunable parameters, i.e., 
difficult to tune to get the optimal 
results 

Photo-consistency metric is simple 
and not optimal. The metric suffers 
when images are not well textured or 
low resolution 
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1.  Fitting step 
A local surface patch is fitted,  
iterating visibility 

2.  Filter step 
Visibility is explicitly enforced 

3.  Expand step 
Successful patches are used  
to initialise active boundary 

Overview: region growing  
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Overview: depth-map fusion 

1.  Compute depth hypotheses 

2.  Volumetrically fuse depth-maps 

3.  Extract 3d surface 


