
MATLAB Workshop

English Version

Ben Glocker, Tobias Sielhorst, Jörg Traub
Dr. Selim Ben Himane

Chair for Computer Aided Medical Procedures
adapted from the MATLAB(c) Documentation

3D Computer Vision

April 14, 2008

1

1 Basics

MATLAB is a numerical mathematics environment. Its easy-to-learn interface
and script language supports rapid prototyping of algorithms. It is also a pow-
erful environment for image processing and vision.

1.1 Environment

After starting MATLAB is ready to use by its command line within the Com-
mand Window. After entering formulas are solved and the answer ans is given
immediately.

>> 2+2

ans =
4

Besides the Command Window there are two important windows. The MAT-
LAB Workspace shows you all variables that are currently in the MATLAB
memory. By clicking on the variables names the data can be directly accessed
via a dialog window. The third window is the Command History. All commands
that were typed in are listed here.

2

2 Matrices

2.1 Scalars, Vectors Matrices

In general MATLAB stores numeric data in matrices. Vectors are stored in
matrices with only one row or column, scalars are just 1-by-1 matrices. So first
of all we will learn how to handle matrices.

2.1.1 Entering data

Matrices can be entered in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions in M-files.

To enter a matrix explicitly, simply type in the Command Window

>> A = [1 2 3; 4 5 6; 7 8 9]

or
>> A = [1,2,3; 4,5,6; 7,8,9]

Matrices are given line by line. To change the colon, use a space or a comma,
to change the line use a semicolon. MATLAB displays the matrix you just en-
tered:

A =
1 2 3
4 5 6
7 8 9

Once a matrix has been entered, it is automatically remembered in the MAT-
LAB workspace. It can be simply refered by typing A.

2.1.2 Subscripts

The element in the row i and the column j of A is denoted by A(i,j).
Typing

>> A(1,3) + A(3,2)

will give the result

ans =
11

3

If you assign a value to a position that is out of the range of the matrix, MAT-
LAB increases the size automatically.

>> X = A;

>> X(3,4) = 10

X =
1 2 3 0
4 5 6 0
7 8 9 10

2.1.3 Colon operator

The colon : is one of the most important MATLAB operators. For example the
expression

>> 1:10

is a row vector containing the integers from 1 to 10:

ans =
1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment:

>> 15:-2.5:5

ans =
15 12.5 10 7.5 5

Subscript expressions involving colons refer to portions of a matrix:

>> A(1:k,j)

is the first k elements of the jth column of A. The colon by itself refers to
all the elements in a row or column of a matrix and the keyword end refers to
the last row or column.

>> A(:,end)

represents the last column vector of A:

ans =
3
6
9

4

2.2 Expressions

Like most other programming languages, MATLAB provides mathematical ex-
pressions, but unlike most programming languages, these expressions involve
entire matrices. The building blocks of expressions are

• Varibales

• Numbers

• Operators

• Functions

2.2.1 Variables

MATLAB does not require any type declarations or dimension statements.

>> num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
element. Variable names consist of a letter, followed by any number of letters,
digits, or underscores. MATLAB is case sensitive.

2.2.2 Numbers

MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers.

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

All numbers are stored internally using the long format specified by the IEEE
floating-point standard. Floating-point numbers have a finite precision of roughly
16 significant decimal digits and a finite range of roughly 10−308 to 10+308.

2.2.3 Operators

Expressions use familiar arithmetic operators and precedence rules.

+ Addition
- Subtraction
* Multiplication
/ Division
\ Left Division
^ Power
’ Complex conjugate transpose
() Specify evaluation order

5

2.2.4 Functions

MATLAB provides a large number of standard elementary mathematical func-
tions, including abs, sqrt, exp, and sin. For a list of the elementary mathe-
matical functions, type

>> help elfun

For a list of more advanced mathematical and matrix functions, type

>> help specfun

>> help elmat

2.3 Working with matrices

2.3.1 Generating

MATLAB provides different functions that generate basic matrices.

zeros All zeros
ones All ones
rand Uniformly distributed random elements
randn Normally distributed random elements

Here are some examples:

>> Z = zeros(2,4)

Z =
0 0 0 0
0 0 0 0

>> F = 5*ones(3,3)

F =
5 5 5
5 5 5
5 5 5

>> N = fix(10*rand(1,10))

N =
9 2 6 4 8 7 4 0 8 4

>> R = randn(4,4)

R =

6

0.6353 0.0860 -0.3210 -1.2316
-0.6014 -2.0046 1.2366 1.0556
0.5512 -0.4931 -0.6313 -0.1132
-1.0998 0.4620 -2.3252 0.3792

2.3.2 Saving and loading

The save function saves variables that exists in the MATLAB Workspace. For
example, typing the entries of a certain matrix:

>> A = [16.0, 3.0, 2.0, 13.0;...
5.0, 10.0, 11.0, 8.0;...
9.0, 6.0, 7.0, 12.0;...
4.0, 15.0, 14.0, 1.0]

will give the following answer:

A =
16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0

To save this variable in a binary file, type:

>> save matrix.mat A

The load function reads binary files containing matrices generated by ear-
lier MATLAB sessions, or reads text files containing numeric data. For example
loading a text file containing these four lines. The statement

>> load matrix.mat

reads the file matrix.mat and creates a variable A containing the example ma-
trix.

2.3.3 Concatenation

Concatenation is the process of joining small matrices to make bigger ones. The
pair of square brackets [] is the concatenation operator. For example:

>> v = [1;4;7];

>> A = [v v+1 v+2]

A =
1 2 3
4 5 6
7 8 9

7

2.3.4 Deleting Rows and Columns

Complete rows and columns can be deleted by using just a pair of square brackets

>> X = A;

>> X(:,2) = []

This changes X to

X =
1 3
4 6
7 9

2.4 Linear Algebra

The mathematical operations defined on matrices are one subject of linear al-
gebra. In the following some operations will be presented.

2.4.1 Matrix Operations

Multiplication The multiplication symbol * denotes the matrix multiplica-
tion involving inner products between rows and columns:

>> A*A’

Transpose The matrix transpose can be applied by using transpose or, for
real matrices, by using ’. Adding a matrix to its transpose produces a symmet-
ric matrix:

>> A+A’

ans =
2 6 10
6 10 14
10 14 18

Inverse The inverse can be get just by

>> inv(A)

2.4.2 Matrix Properties

Determinant The determinant of a matrix can be computed by

8

>> det(A)

Eigenvalue Decomposition To compute the Eigenvalues and the Eigenvec-
tors

>> [V,D] = eig(A)

Singular Value Decomposition To compute the Singular Value Decompo-
sition of a matrix A

>> [U,D,V] = svd(A)

2.5 Controlling Input and Output

2.5.1 Format Function

The format function controls the numeric format of the values displayed by
MATLAB. The function affects only how numbers are displayed, not how MAT-
LAB computes or saves them. Examples

>> x = [4/3 1.2345e-6]

>> format short

x =
1.3333 0.0000

>> format short e

x =
1.3333e+000 1.2345e-006

>> format short g

x =
1.3333 1.2345e-006

>> format long

x =
1.33333333333333 0.00000123450000

>> format rat

x =
4/3 1/810045

9

In addition

>> format compact

suppresses many of the blank lines that appear in the output.

2.5.2 Suppressing Output

If you simply type a statement and press Return or Enter, MATLAB auto-
matically displays the results on screen. However, if you end the line with a
semicolon, MATLAB performs the computation but does not display any out-
put. This is particularly useful when you generate large matrices. For example,

>> A = magic(100);

2.5.3 Entering Long Statements

If a statement does not fit on one line, use an ellipsis (three periods) ... fol-
lowed by Return or Enter to indicate that the statement continues on the next
line. For example,

>> s = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve
readability.

10

3 Programming

3.1 Flow Control

MATLAB has several flow control constructs. They are all known from standard
programming languages. In the following only the syntax is described.

3.1.1 if

The if statement evaluates a logical expression and executes a group of state-
ments when the expression is true. The optional elseif and else keywords
provide for the execution of alternate groups of statements. An end keyword,
which matches the if, terminates the last group of statements. The groups of
statements are delineated by the four keywords–no braces or brackets are in-
volved.

if A > B
’greater’

elseif A < B
’less’

elseif A == B
’equal’

else
error(’Unexpected situation’)

end

3.1.2 switch and case

The switch statement executes groups of statements based on the value of a
variable or expression. The keywords case and otherwise delineate the groups.
Only the first matching case is executed. There must always be an end to match
the switch.

switch(value)
case 0

M = A
case 1

M = B
otherwise

M = C
end

Unlike the C language switch statement, MATLAB switch does not fall through.
If the first case statement is true, the other case statements do not execute. So,
break statements are not required.

3.1.3 for

The for loop repeats a group of statements a fixed, predetermined number of
times. A matching end delineates the statements.

11

for i = 3:3:12
A(i) = 5;

end

The result will be a 1-by-12 vector with every third value equals 5.

Remark: MATLAB for loop is very slow. Try to avoid it as often as possi-
ble. Instead of the example given above, use:

A(3:3:12) = 5

3.1.4 while

The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.

while A > B
A = A - 1;

end

3.1.5 continue

The continue statement passes control to the next iteration of the for or while
loop in which it appears, skipping any remaining statements in the body of the
loop. In nested loops, continue passes control to the next iteration of the for
or while loop enclosing it.

3.1.6 break

The break statement lets you exit early from a for or while loop. In nested
loops, break exits from the innermost loop only.

3.2 M-files

MATLAB is a powerful programming language as well as an interactive com-
putational environment. Files that contain code in the MATLAB language are
called M-files. You create M-files using a text editor, then use them as you
would any other MATLAB function or command.

There are two kinds of M-files:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output argu-
ments. Internal variables are local to the function.

12

3.3 Scripts and Functions

3.3.1 Scripts

When you invoke a script, MATLAB simply executes the commands found in
the file. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return output
arguments, any variables that they create remain in the workspace, to be used
in subsequent computations. In addition, scripts can produce graphical output
using functions like plot. Example script that generates 32 random values with
randn and displays the values as bar graphic.

r = zeros(1,32);
for n = 1:32

r(n) = randn;
end
r
bar(r)

If this code is saved in a file called barrandn.m, the script can be started by
simply typing barrandn in the command line.

3.3.2 Functions

Functions are M-files that can accept input arguments and return output ar-
guments. The name of the M-file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt. Example function
sumup with one parameter a that sums up the values from 1 to a.

File sumup.m:

function r = sumup(a)
% Function that sums up the values from 1 to a
sum = 0;
for i = 1:a

sum = sum + i;
end
r = sum;

Typed in the command line sumup(5) produces:

>> sumup(5)

ans =
15

Function Handles You can create a handle to any MATLAB function and
then use that handle as a means of referencing the function. A function handle

13

is typically passed in an argument list to other functions, which can then exe-
cute, or evaluate, the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the func-
tion name. The following example creates a function handle for the sumup
function and assigns it to the variable fhandle.

>> fhandle = @sumup;

Evaluate a function handle using the MATLAB feval function. The function
plot fhandle, shown below, receives a function handle and data, and then per-
forms an evaluation of the function handle on that data using feval.

function x = plot_fhandle(fhandle,data)
dimension = prod(size(data));
r = data;
for i = 1:prod(size(data))

r(i) = feval(fhandle,data(i));
end
x = r
plot(data,r,’+’)

Typing in the MATLAB command line

>> v = [1 2 3 4 5];

>> plot_fhandle(@sumup,v)

computes the results of the function sumup for the values within v and plots
them.

Function Functions A class of functions called function functions works with
nonlinear functions of a scalar variable. That is, one function works on another
function. The function functions include

• Zero finding

• Optimization

• Quadrature

• Ordinary differential equations

MATLAB represents the nonlinear function by a function M-file. For example
a simple nonlinear function:

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1

14

>> x = 0:0.002:1;

>> y = humps(x);

Then plot the function with

>> plot(x,y)

The graph in Figure 1 shows that the function has a local minimum near x
= 0.6. The function fminsearch finds the minimizer, the value of x where the
function takes on this minimum. The first argument to fminsearch is a func-
tion handle to the function being minimized and the second argument is a rough
guess at the location of the minimum.

>> p = fminsearch(@humps,.5)

p =
0.6370

To evaluate the function at the minimizer

>> humps(p)

ans =
11.2528

3.4 Setting Paths

In order to have your own files, functions, scripts and data available in the
MATLAB environment and on the command line, it is necessary to add your
directories to MATLAB path variable. This can be done by opening the Set
Path... option from the File menu.

15

Figure 1: Function humps(x)

4 Graphics

4.1 Images

4.1.1 Loading an image

First of all an image has to be read into the MATLAB memory. This is done
by using the command imread.

>> I = imread(’image.jpg’);

When loading images it is useful to write the semicolon at the end of the com-
mand, otherwise the whole image matrix is printed. The image data is saved in
the variable I containing a MxN or MxNx3 matrix corresponding the number
of channels.

For simplicity in this tutorial we will only work with 1-channel grayscale images.
If the loaded image is grayscale but anyhow there are three channels (represented
by a NxMx3 matrix) simply take just one of the channels by typing

>> I=I(:,:,1);

4.1.2 Displaying an image

Images can be displayed with the command

16

>> imshow(I);

The imshow(I,N) command displays the intensity image I with N discrete levels
of gray. If N is omitted, imshow uses 256 gray levels on 24-bit displays, or 64
gray levels on other systems.
Every matrix of dimension MxN or MxNx3 can be displayed as an image by
using the command

>> image(I);

If I is a 2-dimensional MxN matrix, the elements of I are used as indices into
the current colormap to determine the color. For correct visualization of the
grayscale image it is necessary to specify the colormap by typing

>> colormap(gray(256));

before displaying the image I. When I is a 3-dimensional MxNx3 matrix, the
elements in I(:,:,1) are interpreted as red intensities, in I(:,:,2) as green
intensities, and in I(:,:,3) as blue intensities.

4.1.3 Manipulating image data

Most image data is of data type uint8 so one byte containing values from 0 to
255. For further image processing and computations it is necessary to convert
the image data. Typing

>> I=double(I);

converts the matrix of data type uint8 into data type double. Now it is possi-
ble to do all kind of computations on the image data. For example

>> image(I+50);

displays the image I where each pixel intensity is increased by 50. Manipu-
lating the image data can be done directly on the matrix I. The next example
shows how to set a half of the 10th row to the intensity 255.

>> for i=1:(size(I,2)/2)
I(10,i) = 255;
end

Typing again image(I) shows the result. In the last example the command
size(I,2) is used to determine the number of columns of the matrix or the
width of the image. Respectively gives size(I,1) the number of rows or the
height of the image.

Remark: Sometimes (often!) it is better to use imagesc instead of image in
order to make the data scaled to the full colormap.

17

4.2 Data Visualization

MATLAB provides a variety of functions for displaying vector data as line plots,
as well as functions for annotating and printing these graphs.

4.2.1 Create Line Plots

The plot function has different forms depending on the input arguments. For
example, if y is a vector, plot(y) produces a linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.
For example the developing of the intensities in a single row of our image can
be plotted

>> plot(I(100,:));

The graph shows the intensities varying along line 100. If we plot row 10 with
plot(I(10,:)) we get a constant graph representing the line we have manipu-
lated before.

The command

>> grid on;

shows an underlying grid within the figure.

4.2.2 Adding Plots to an Existing Graph

You can add plots to an existing graph using the hold command. When you
set hold to on, MATLAB does not remove the existing graph; it adds the new
data to the current graph, rescaling if the new data falls outside the range of
the previous axis limits.

>> plot(I(100,:));

>> hold on;

>> plot(I(10,:));

plots both graphs in one figure. The hold command can be turned off by
typing hold off.

4.2.3 Specifying Data Point Markers, Line Styles and Colors

There are a lot of possibilities to specify the plotted graphs. You can define the
colors and line styles. It is also possible to plot only markers at the data points.
Here are some examples, for more information please read the MATLAB help.

>> plot(I(100,:),’r+’);

18

plots a red ’+’ at each data point.

>> plot(I(100,1:20:end),’-rs’,’LineWidth’,2,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’g’,...
’MarkerSize’,10);}

plots a graph (Figure 2) of every 20th pixel of row 100 and marks each data
point with a green rectangle.

Figure 2: Plot of every 20th pixel of row 100 in Image I

4.2.4 Setting Axis Parameters

MATLAB selects axis limits based on the range of the plotted data. You can
specify the limits manually using the axis command. Call axis with the new
limits defined as a four-element vector.

axis([xmin,xmax,ymin,ymax])

By default, MATLAB displays graphs in a rectangular axes that has the same
aspect ratio as the figure window. This makes optimum use of space available
for plotting. MATLAB provides control over the aspect ratio with the axis
command.
The command

axis square

19

makes the x- and y-axes equal in length. The square axes has one data unit in
x to equal two data units in y. If you want the x- and y-data units to be equal,
use the command

axis equal

This produces an axes that is rectangular in shape, but has equal scaling along
each axis.
If you want the axes shape to conform to the plotted data, use the tight option
in conjunction with equal.

axis equal tight

4.2.5 3D Plots

The plot3 function displays a three-dimensional plot (Figure 3) of a set of data
points. Example

>> t = 0:pi/50:10*pi;

>> plot3(sin(t),cos(t),t)

>> grid on

>> axis square

4.2.6 Mesh Plots

A heightmap is a 3D representation of an image where the pixels intensities are
used as the height at each position. The visualization looks similar to an area
with mountains. In MATLAB such a heightmap can be easily created with

>> mesh(I);

The mesh command creates 3-D surface plot of matrix data. If I is a matrix for
which the elements I(i,j) define the height of a surface over an underlying (i,j)
grid.

4.2.7 Figure Windows

Graphics functions automatically create new figure windows if none currently
exist. If a figure already exists, MATLAB uses that window. If multiple figures
exist, one is designated as the current figure and is used by MATLAB (this is
generally the last figure used or the last figure you clicked the mouse in).

The figure function creates figure windows. For example,

>> figure

20

Figure 3: 3D Plot

creates a new window and makes it the current figure. You can make an exist-
ing figure current by clicking on it with the mouse or by passing its handle (the
number indicated in the window title bar), as an argument to figure.

>> figure(h)

21

5 Video editing

5.1 Loading Video Files

A video file of type AVI can be loaded in the MATLAB memory by typing

>> MOV=aviread(’movie.avi’);

The i-th frame can be loaded by specifying the frame index

>> FRAME=aviread(’movie.avi’,i);

MATLAB provides a data struct for holding movie frames in memory. It consists
of two fields. The field cdata contains the image data of the frame, colormap
contains information about the colormap that is used to display the frames. If
the frames are truecolor images the field colormap will be empty. Typing

>> aviinfo(’movie.avi’)

the properties of the movie file will be printed.

5.2 Editing Frames

After loading a whole video sequence, single frames can be accessed by

>> FRAME=MOV(i);

The raw image data of a frame can be extracted easily by typing

>> IMAGE=FRAME.cdata;

That allows us to handle movie frames like single images. For example

>> for i=5:5:size(MOV,2)
I=MOV(i).cdata;
I(:,:,:)=255;
MOV(i).cdata = I;
end

will fill every fifth frame with intensity 255 (white).

5.3 Exporting

To export a MATLAB movie the command movie2avi is used.

>> movie2avi(MOV,’movie2.avi’);

saves the movie in the file movie2.avi on the harddisk.

22

	1 Basics
	1.1 Environment

	2 Matrices
	2.1 Scalars, Vectors Matrices
	2.1.1 Entering data
	2.1.2 Subscripts
	2.1.3 Colon operator

	2.2 Expressions
	2.2.1 Variables
	2.2.2 Numbers
	2.2.3 Operators
	2.2.4 Functions

	2.3 Working with matrices
	2.3.1 Generating
	2.3.2 Saving and loading
	2.3.3 Concatenation
	2.3.4 Deleting Rows and Columns

	2.4 Linear Algebra
	2.4.1 Matrix Operations
	2.4.2 Matrix Properties

	2.5 Controlling Input and Output
	2.5.1 Format Function
	2.5.2 Suppressing Output
	2.5.3 Entering Long Statements

	3 Programming
	3.1 Flow Control
	3.1.1 if
	3.1.2 switch and case
	3.1.3 for
	3.1.4 while
	3.1.5 continue
	3.1.6 break

	3.2 M-files
	3.3 Scripts and Functions
	3.3.1 Scripts
	3.3.2 Functions

	3.4 Setting Paths

	4 Graphics
	4.1 Images
	4.1.1 Loading an image
	4.1.2 Displaying an image
	4.1.3 Manipulating image data

	4.2 Data Visualization
	4.2.1 Create Line Plots
	4.2.2 Adding Plots to an Existing Graph
	4.2.3 Specifying Data Point Markers, Line Styles and Colors
	4.2.4 Setting Axis Parameters
	4.2.5 3D Plots
	4.2.6 Mesh Plots
	4.2.7 Figure Windows

	5 Video editing
	5.1 Loading Video Files
	5.2 Editing Frames
	5.3 Exporting

