Computer Vision and Deep Learning for Autonomous Driving

Introductory meeting

Dr. Habil. Federico Tombari, Prof. Nassir Navab, Fabian Manhardt, Johanna Wald
Seminar contents

- The seminar includes a selection of the most recent and relevant papers in the field of computer vision and deep learning aimed at autonomous driving.
- Papers are selected to cover different aspects of the topic:
 - Semantic Segmentation
 - Scene Understanding
 - Multi-modal sensor fusion
 - SLAM and 3D reconstruction
 - Synthetic dataset creation
 - Car Simulators
 - Semi-supervised large-scale dataset annotations
 - Trajectory planning and lane change prediction
Goals

● You are going to learn:
 ○ about relevant works in the field of Computer Vision and Deep Learning
 ○ what is Autonomous Driving and why it is a relevant technology for future applications
 ○ how to read and understand a scientific article
 ○ how to write a scientific report
 ○ how to give a talk to an audience, and deal with related questions afterwards
Seminar Schedule

- 6 sessions, 1 every Thursday, 11am-12.30pm
- Two presentations per session
- Seminarraum 03.13.010

- Paper assignments:
 - selected students can express up to 3 preferences
 - We will then match them to a paper and tutor trying to maximize global happiness
Presentation

- Each presentation is 20 minutes + 10 minutes for Q&A
- Slides templates (Powerpoints, Latex, ..) provided on website

- The presentation should cover all relevant aspects of the paper
 - Introduction and state of the art
 - Main contribution(s)
 - Experimental results
 - Discussion, summary and future work

- The presentation should be self-contained
- All students are expected to attend all presentations and interact during Q&A (this will influence your final mark)
The report should summarize the paper in the way it has been presented during the talk, and provide the student’s opinion concerning the main contributions and impact.

- Language: English
- Max 8 pages
- Template on course website
- Once ready, send the report to supervisor, within **two weeks** from the day of the presentation.
Evaluation criteria

- Quality of presentation (both regarding slides and speech)
- Quality of the report
- Comprehension of the scientific contents of the presented work
- Interaction and participation during the other talks
Y. Zhou et al, “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection”, 2018

- Object Detection in point clouds from outdoor data
- Convolutional Neural Network used as classifier for 3 classes
- Designed to work with sparse LIDAR data
X. Chen et al, “Multi-View 3D Object Detection Network for autonomous Driving”, CVPR 2017

- Sensor-fusion framework that takes both LIDAR point cloud and RGB to predict 3D bounding boxes
- Generates 3D Proposals from LIDAR data
- Projects proposal on RGB image and conducts data fusion
- Classification of proposal together with refinement for tighter fit

- “Lightweight” Deep Learning for embedded/mobile applications
- Goal: reduce memory footprint and increase feed-forward time while keeping a relatively good segmentation accuracy
M. Liu et al., “Unsupervised Image-to-Image Translation Networks”, 2017

- Use of Generative Adversarial Networks (GANs) to generate novel illumination/weather conditions and image modalities
- Works in an unsupervised manner
- Applied to street scenes for autonomous driving applications

- Simulator for autonomous driving research
- Flexible: different sensing modalities, different weather and traffic conditions
- Completely open source