
Feb 6 2004

Asa MacWilliams
Lehrstuhl für Angewandte Softwaretechnik

Institut für Informatik, Technische Universität München
macwilli@in.tum.de

Ubiquitous Tracking using
the DWARF Middleware

Ubiquitous Tracking Project Workshop

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 2

Summary
• An implementation of the Ubiquitous Tracking concepts

needs middleware infrastructure
• DWARF contains decentralized, adaptive middleware

which is well-suited to this task
• The DWARF middleware can contribute to:

– Communication between software components
– Discovery of new devices in environment
– Configuration and adaptation of components
– Formation of data flow networks

• However, it will need to be extended for
– Scalability
– Performance
– Ad hoc networks

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 3

Motivation
• Within the Ubiquitous Tracking project:

– Distribution is part of the game
– Ad hoc discovery and configuration of trackers
– Formation of data flow graph

• Within the DWARF project:
– For ubiquitous AR, we need ubiquitous tracking
– Using DWARF in lets us leverage existing components

• My personal motivation:
– DWARF architecture and middleware are basis of my Ph.D. thesis
– Ubiquitous tracking is a good application to “harden” the

framework and the middleware

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 4

Data Flow Graph from Spatial Graph
From technical report…
• Every edge qAB in

spatial relationship
graph must be
measured or
computed

• For this, we can set up
data flow graph of
communicating
components

• Construction of data
flow graph is based on
attributes

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 5

Attributes
• Spatial relationships have attributes

– E.g. latency, frequency, cost, confidence, accuracy
• Two basic assumptions about attributes:

– Attributes change “more slowly” than measurements themselves…
…thus, it pays off to set up a data flow graph in the background
– Attributes of inferred measurements can be described without

actually inferring the measurements
…thus, we can compare the results of speculative data flow graphs

without actual data flow

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 6

DWARF in Brief
• Framework for Mobile AR in

ubiquitous computing environments
• Example scenarios:

– Navigation (Pathfinder)
– Maintenance (TRAMP)
– Multi-Player Game (SHEEP)
– Collaborative Building Design

(ARCHIE)
– Medical (HEART)

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 7

DWARF Consists of Distributed Services
During design… …and at run time

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 8

Services in DWARF
• Services have Needs and Abilities, which have types

• Abilities have Attributes, Needs have Predicates.
• These can be set at runtime.
• One service’s Needs depend on other services’ Abilities.
• Distributed CORBA-based Middleware establishes connections for

communication between services (management, lookup, connection)

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 9

Communication mechanisms
Needs and Abilities communicate via connectors, which have protocols

• Connectors so far:
– CORBA structured “push” events, using strongly typed data,

• e.g. struct PoseData { double x,y,z; … } in IDL
– CORBA method calls
– Shared memory (for local video transfer)

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 10

Mapping Ubitrack onto DWARF
• I propose a simplistic mapping:

– Data flow components are DWARF Services
• Trackers, filters, interpolators, extrapolators, inference components…

– For each spatial relationship a service can compute, it has one
ability of type PoseData

– The relationship’s attributes, and the identity of the objects related,
are mapped onto the Ability’s attributes

– The communication
protocol uses CORBA
events or CORBA get…()
method calls

– Components like trackers
have other needs, e.g. for
configuration or video data

…but that isn’t relevant here

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 11

Starting Services on Demand
• Some of a service’s

attributes are relatively
independent of the
actual data it processes

• …thus, we can describe
services that are not
actually running…

• …and start them on
demand, when they’re
needed

<service name="OpticalTracker”
 startCommand="/usr/bin/mytracker Alice.conf”>

 <attribute name="Room" value="Studio"/>
 <attribute name="Lag" value="0.01"/>
 <attribute name="Jitter" value="0.5"/>
 <attribute name="Drift" value="1.2"/>

 <need name="markerData" type="MarkerData" …/>
 <need name="videoStream" type="VideoStream”…/>

 <ability name="relation1" type="PoseData">
 <attribute name="Thing" value="AlicesHead"/>
 <attribute name="RelativeTo" value="Studio"/>
 <connector protocol="NotificationPush"/>
 </ability>

 <ability name="relation2" type="PoseData">
 <attribute name="Thing" value="AlicesHand"/>
 <attribute name="RelativeTo" value="Studio"/>
 <connector protocol="NotificationPush"/>
 </ability>

</service>

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 12

Dynamic Attribute Changes
• So far, all attributes were specified in static XML files
• However, they can be changed at run time as well…

– By services
• e.g. when a tracker recognizes its accuracy is going down (optical

tracker in failing light conditions)
…Then, the middleware can select a “better” tracker for the

application requesting it
– And by the middleware

• depending on other services found in the system
• according to certain rules

…that lets the middleware construct adaptive data flow graphs

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 13

Binding Attributes: Configuration
• The attributes of a

service’s abilities
depends on how its’
needs are satisfied

• For example, an optical
tracker can only detect
things it has marker
descriptions for

• For each marker
description found, the
service gets a new ability

• The middleware can do
this in the background,
before an ability is
actually requested

<service name="OpticalTracker”
 startCommand="/usr/bin/mytracker Alice.conf”>

…
 <need name="markerData" type="MarkerData"
 predicate="(Thing=*)">
 <connector protocol="ObjrefImport"/>
 </need>

 <ability name="relation1" type="PoseData”
 isTemplate="true">
 <attribute name="Thing"
 value="$(markerData.Thing)">
 <connector protocol="NotificationPush"/>
 </ability>

</service>

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 14

Binding Attributes: Cloning
• Some services can exist

arbitrarily often
• For example, the

Interpolation,
Extrapolation, and
Filtering components

• The middleware can
instantiate these
(“cloning”) in the
background, depending
on other available
services

<service name=”MyFilter” isTemplate="true">
 startCommand="/usr/bin/myfilter”>

 <need name=”input" type=”PoseData"
 predicate=”(&(Thing=*)(RelativeTo=*)
 (Jitter>0.2))”…/>

 <ability name=”output" type="PoseData”>
 <attribute name="Thing"
 value="$(input.Thing)">
 <attribute name="RelativeTo "
 value="$(input.RelativeTo)"> …
 <attribute name=”Jitter "
 value="$(input.Jitter*0.1)"> …
 </ability>
</service>

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 15

Binding Attributes: Cloning (2)
• The same technique

works for the Inference
components, too

• The middleware can
instantiate these
background, depending
on other available
services

• Recursively, this forms
chains of services

… even forests that grow
exponentially

<service name=”MyInferrer” isTemplate="true">
 startCommand="/usr/bin/myinferrer”>

 <need name=”input1" type=”PoseData"
 predicate=”(&(Thing=*)(RelativeTo=*))”…/>

 <need name=”input2" type=”PoseData"
 predicate=”(&(Thing=*)
 (RelativeTo=$(input1.Thing)))”…/>

 <ability name=”output" type="PoseData”>
 <attribute name="Thing"
 value="$(input2.Thing)">
 <attribute name="RelativeTo "
 value="$(input1.RelativeTo)"> …
</ability>
</service>

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 16

Branching and Selection
• Middleware finds graphs of “potential” services in background
• When user (or application) requests a particular ability of a particular

service, the appropriate chain is started up

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 17

Adaption: Feedback Loop
• Feedback loop:

– Services change their attributes according to measurements or
calculations they make

– Depending on the attributes, the middleware constructs data flow
graphs

– Depending on the data flow graphs, services are reconfigured to
make different measurements or to calculate different values

• Inputs:
– the measurements depend on the environment
– And the data flow depends on the Needs of the application

• Such feedback loops can
– Adapt to changing circumstances
… but also be chaotic and unstable
… or end up in degenerate attractors

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 18

Decentralized Algorithm
• The proposed algorithm is fairly simple to implement in a

distributed fashion
– The implementation of the DWARF middleware is based on

Service Managers, which run on each computer in the network
• In fact, the branching of service graphs benefits from

distribution
• Of course, scalability and performance may become

issues
– “Damping” rules needed to keep service graphs from exploding
– Local middleware must react quickly to attribute changes of

“relevant” services

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 19

Implementation Status
• Binding of attributes works only during cloning

– E.g. create new filter for a certain tracker
• Evaluation of expressions not implemented yet

– No “$(myNeed.myAttribute+1)” expressions
– Only “Wildcard attributes”:

• <attribute name="Thing" value="*">
 in Need definition; is equivalent to

• <attribute name="Thing" value="$(need.Thing)>”

• Attribute changes of connected services are not
propagated

• Services are not notified when their attributes change
• Service Managers do not scale well to thousands of

services

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 20

What Needs to be Done
• Formalize it:

– A template service description maps Q onto Q’
• Investigate it:

– Find set of attributes that can be evaluated decentrally
– Test middleware behavior with thousands of service descriptions

• Implement it:
– Implement attribute evaluation scheme
– Notify Services of attribute changes
– Propagation of attribute changes between service managers

• Improve current middleware performance:
– Better service location: beyond SLP (…)
– Colocated communication to improve performance (…)

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 21

Service Location: Beyond SLP
• Currently, the service location mechanism uses SLP,

which
– uses broadcast/multicast queries
– supports attributes and boolean predicates
– is designed for fairly static services, e.g. printers
– could span networks using federated directory agents

• If we had an implementation of that
• What else could we use?

– Multicast DNS: announcements, but no boolean predicate support
– Implement some peer-to-peer resource finding algorithm using

distributed indexes
– Perhaps implement an own SLP directory agent

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 22

Efficient Communication: Colocation
• Currently, each DWARF service is a separate process

– That creates communication overhead However, there is no
compelling reason for that

• One process can implement multiple services and
– register them all with registerService()
– create new services on demand with registerServiceLoad()
– if these service communicate using method calls, the ORB passes

the call through directly
• We could support this generally by copying from COM

– compiling C++ Services to shared libraries
– write a loader process to load them
– keep transparent for Services, using CorbaInit or Template Service

• However, Notification Service channels are in notifd, so...
– handle 1-to-1 connections directly in loader process
– link libAttNotification into loader process, too

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 23

Discussion
• Strengths

– One solution for resource discovery, configuration,
adaption

– Completely decentralized
– Builds on existing framework

• Weaknesses
– It may not be possible to evaluate all attributes in a

piecewise, decentralized fashion
– Distributed, “heavyweight” middleware creates

overhead
– It may not scale, in practice

Feb 6 2004
Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de 24

Looking forward
• Where are we now?

– We have an idea for a distributed solution
– We have a partial implementation

• Open questions:
– Is a decentralized attribute evaluation scheme enough?
– Can we keep exploding search graphs under control?
– Which attributes should we choose?
– How should we specify the attribute dependencies?
– Will it scale?
– How do we integrate with OpenTracker / Studierstube?

• What should happen next?
– Formalize, investigate, implement, optimize

Feb 6 2004

Asa MacWilliams
Lehrstuhl für Angewandte Softwaretechnik

Institut für Informatik, Technische Universität München
macwilli@in.tum.de

Ubiquitous Tracking using
the DWARF Middleware

Ubiquitous Tracking Project Workshop

Thank You for Your Attention!
Any Questions?

macwilli@in.tum.de

