An Architecture for Distributed Spatial Configuration of Context Aware Applications

3rd Studierstube Workshop
TU Wien

Martin Wagner and Gudrun Klinker
Augmented Reality Group
Institut für Informatik
Technische Universität München
martin.wagner@in.tum.de

December 19, 2003
Integrating Client Devices in UbiComp

• In Ubiquitous Computing, devices in the environment interact with mobile client devices
• Applications adapt to these devices’ capabilities and user’s context
• Problem: context aware configuration of users’ mobile client computers
 – Adapt configuration to current location, activity, time and identity of user
 – Use mobile client’s capabilities within the UbiComp infrastructure
 – Allow integration of arbitrary mobile clients without a priori knowledge
Overview

• Example Scenario
• Approach: Distributed Configuration
• Software Basis: DWARF
• Automatic Context Aware Configuration
• Implementation Status
• Future Work
Example Scenario

- User walks around smart building, equipment:
 - Camera with optical tracker
 - 3D visual I/O system including HMD and Touchglove

- Mobile and stationary components collaborate in estimating user’s context, mobile computers need to be configured dynamically

- Applications are composed of application logic in environment and user interface on mobile client

- Applications are chosen and configured based on current user context
Overview

• Example Scenario
• **Approach: Distributed Configuration**
• Software Basis: DWARF
• Automatic Context Aware Configuration
• Implementation Status
• Future Work
Approach: Distribute Configuration Data

• Configuration data:
 – Data needed for a generic hard- or software device to work correctly in an UbiComp environment

• Drawbacks of central configuration architecture:
 – Whole environment is single complex application
 – Unexpected side effects if configuration is adapted to new applications or users
 – Single point of failure

• Contextually distributed information storage
 – Simplifies partial reconfiguration
 – Allows users to store private configuration data on their mobile clients
Requirements for CA Architecture

• Context aware configuration data
 – Current configuration depends on n-tuple describing current context:
 \{location, identity, activity, time, …\}

• Transparent access to configuration data
 – Automatic partial or full reconfiguration of client and environment components
 – Transparency allows flexible organization of configuration databases

• Separate context estimation component
 – Facilitates processing of low-level sensor information of both environment and mobile client
Overview

• Example Scenario
• Approach: Distributed Configuration
• **Software Basis: DWARF**
• Automatic Context Aware Configuration
• Implementation Status
• Future Work
DWARF Overview

• Distributed Wearable Augmented Reality Framework
• CORBA-based middleware dynamically connects Services (DWARF components) based on description of their Needs and Abilities
• No central component, Service Managers running on each network node handle connection of services
• Ability descriptions may be enhanced using Attributes describing contextual information
• Need description may give Predicates for narrowing the search space of matching services
• Abilities may change at runtime depending on how needs are satisfied
DWARF overview (ctd.)

- Once a need and an ability match, DWARF sets up a *connector* that both services use to communicate.
- Example: Optical tracker

```plaintext
DWARF overview (ctd.)

- Once a need and an ability match, DWARF sets up a *connector* that both services use to communicate.
- Example: Optical tracker

```
Overview

• Example Scenario
• Approach: Distributed Configuration
• Software Basis: DWARF
• Automatic Context Aware Configuration
• Implementation Status
• Future Work
Configuration Architecture: Components

Sensors: Read low-level data influenced by the user’s current state; may need to be configured; are both on user’s mobile client and in the environment.

Context Estimation: Read sensor data and estimate high-level contextual information; may need to be configured; are both on user’s mobile client and in the environment.

Application: Performs certain task for the user; behavior influenced by current context.

Config Data: Store configuration data for specific context tuples, reconfigure sensor and context estimation components accordingly.
Configuration Architecture: Example

Video Grabber: gets video image and puts it in a shared memory segment

Optical Tracker: Detects fiducial markers in video image and reconstructs camera‘s (i.e. user‘s) position and orientation *(pose)*

Application: Takes user‘s pose and superimposes augmentations over the user‘s view

Context Estimation: Reads camera‘s pose and estimates the room the user is currently in

Config Data: Stores data organized along the different rooms, reconfigures other components accordingly
Configuration Arch.: Example Structure
Overview

- Example Scenario
- Approach: Distributed Configuration
- Software Basis: DWARF
- Automatic Context Aware Configuration
- Implementation Status
- Future Work
Implementation Status

- Demonstration setup with location as only contextual information
- Location structured into 4 different rooms
- Optical tracker uses AR Toolkit
- Application uses speech to tell user information about the current room
- Configuration Data is kept in a MySQL database, a single DWARF ability is offered for every contextual state
Overview

- Example Scenario
- Approach: Distributed Configuration
- Software Basis: DWARF
- Automatic Context Aware Configuration
- Implementation Status
- Future Work
Future Work

• Build larger demonstration setup
 – Implement bootstrapping of contextual state
 – Evaluate scalability of approach

• Refine concept of contextual entities
 – Up to now, we use physical rooms
 – Structure context such that design of new applications becomes more intuitive
 – Learn context boundaries automatically

• Incorporate advanced configuration data access mechanisms
 – Distributed databases
 – Caching and prefetching
Thank You! Any Questions?

More Information:
Web page: http://www.augmentedreality.de
E-Mail: martin.wagner@in.tum.de

A DWARF project – Distributed Wearable Augmented Reality Framework