#### Augmented Reality II User Interfaces: Theories, Principles, Guidelines

Gudrun Klinker June 22, 2004

### Outline

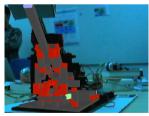
- Motivation: Examples of AR as a novel User Interface (Reminder)
- Introduction to "traditional UI design"
  - Human factors (last week)
  - Theories
  - Principles
  - Guidelines

#### Literature

 Ben Shneiderman, "Designing the User Interface, Strategies for Effective Human-Computer Interaction", Addison Wesley. (Chapter 2)

### Motivation

- Augmented Reality as a new, threedimensional user interface supporting direct manipulation.
- How can it be integrated / used in real applications?
- What are the theories, principles and guidelines of creating good user interfaces?


### Motivation - Examples -



PAARTI (stud welding)
 – heARts (Minimally invasive surgery)



• Fatamorgana (car design)



FixIT (diagnosis of machine malfunctions)
 – STARS (plant maintenancs)



SHEEP (collaborative process control)
 – CAR (rapid prototyping of UI functionality)

## Human Factors (last week)

### 2. Theories

#### 2. Theories

- High-Level Theories
- Object-Action Interface Model

### 2.1 High-Level Theories

- Predictive
  - Perceptual/Cognitive Tasks
  - Motor Tasks
- Explanatory
  - Taxonomies

# 2.1 High-Level Theories- Taxonomies -

- Input Devices
  - direct vs. indirect
  - linear vs. rotary
- Tasks
  - structured vs. unstructured
  - controllable vs.
     immutable
- Personality Styles
  - convergent vs. divergent
  - field dependent vs.
     independent

- Technical Aptitudes
  - spatial visualization
  - reasoning
- User Experience Levels
  - novice vs. knowledgeable
     vs. expert
- User Interface Styles
  - menus vs. form-fillins vs. commands

## 2.1 High-Level Theories- Overview -

- Top-Down Model
- GOMS and keystrokes model
- Stages of Action Model
- Consistency through grammars
- Widget-level theories

# 2.1 High-Level Theories- Top-Down Model -

Separation of concerns

# 2.1 High-Level Theories- Top-Down Model -

- Conceptual Level
  - user's mental model
- Semantic Level
  - meanings conveyed by the user's command input and by the computer's output display
- Syntactic Level
  - assembly of units (words) into complete sentences
- Lexical Level
  - device dependencies, precise mechanisms of specifying syntax

## 2.1 High-Level TheoriesGOMS and Keystroke-Model -

"How to do it" knowledge is described in a formal form that can be executed, performance can be predicted

### 2.1 High-Level Theories

- GOMS and Keystroke-Model -
- GOMS
  - Goals

and subgoals of users

- Methods and procedures are used by the users (coarse grain)
- Operators

on elementary perceptual motor/cognitive acts (fine grain)

- Selection rules control structure to choose among several methods
- Keystroke-Level Model
  - Production rules to describe conditions and actions

## 2.1 High-Level Theories- Stages of Action Models -

#### Describe user exploration of an interface

# 2.1 High-Level TheoriesStages of Action Models -

- Users go through 7 stages of action in trying to use a system
  - Form the goal
  - Form the intention
  - Specify the action
  - Execute the action
  - Perceive the system state
  - Interpret the system state
  - Evaluate the outcome

- Key ideas:
  - Cycle of action
  - Evaluation
  - Gulf of execution mismatch: user's intention vs. allowable action
  - Gulf of evaluation mismatch: system's representations vs. user's expectations

### 2.1 High-Level Theories

- Stages of Action Models -
- 4 principles of good design
  - State and action alternatives should be visible
  - Good conceptual model with consistant system image
  - Interface must include good mappings that reveal the relationships between stages
  - User should receive continuous feedback
- Emphasis on studying errors, occurring when moving from <goals> to <intentions> to <actions> to <executions>

### 2.1 High-Level Theories

- Stages of Action Models -
- Helps describe user exploration of an interface
- Critical points for a user interface
  - Users can form an inadequate goal
  - Users might not find the correct interface object due to incomprehensable icon or label
  - Users may not know how to specify or execute a desired action
  - Users may receive inappropriate or misleading feedback

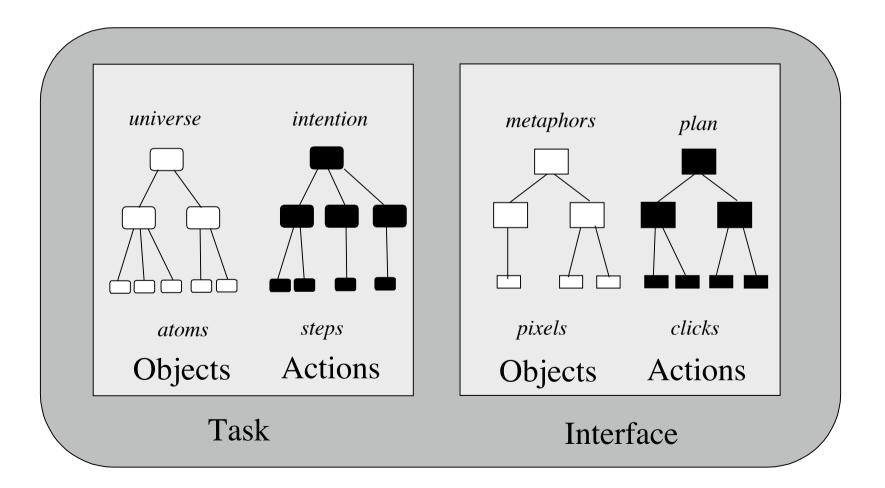
## 2.1 High-Level Theories- Consistency Through Grammars-

Enforce consistency and completeness of an interface

### 2.1 High-Level Theories

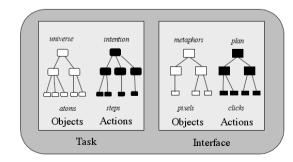
- Consistency Through Grammars-
- In order to be easy to learn and to retain, a command language / set of actions should be
  - orderly
  - predictable
  - describable by a few rules
- Concepts of consistency and completeness

## 2.1 High-Level TheoriesWidget-Level Theories -


Build upon simplifications provided by wellestablished sets of widgets

# 2.1 High-Level TheoriesWidget-Level Theories -

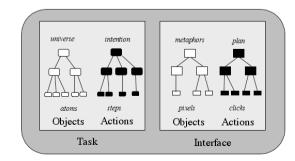
- Hierarchical decomposition ok, but often too many details.
- Follow simplifications on the higher level of UI building tools
- Measure of layout appropriateness
  - associated widgets should be next to one another
  - left-to-right sequence according to task sequence


#### 2.2 Object-Action Interface Model

### 2.2 Object-Action Interface Model - General Concept: OAI -



## 2.2 Object-Action Interface Model


- Task Hierarchies of Objects and Actions -
  - Decomposition of real-world objects
  - Decomposition of intentions into smaller steps
  - System support for professionals:
    - Designers must learn about the application domain before building interfaces
    - Users must know the domain before using interfaces



### 2.2 Object-Action Interface Model

- Interface Hierarchies of Objects and Actions -

- Interface object deals with storage in a computer (directories, files)
- Interface action (high-level plan, mid-level plan, low-level plan)
- Metaphoric representation (abstract vs. concrete vs. analogical)
- Users learn by watching a demo, hearing explanations, or conducting trial-&-error sessions



# 2.2 Object-Action Interface ModelDisappearance of Syntax -

- Command interface: many special keys
  - position, meaning varies across systems and languages
  - rote memorization
  - formal notations (BNF) confusing to non-computer scientists
- OK for experts, but not for novices and knowledgeable users
- Better: menus

### 3. Principles

### 3. Principles

- Principle 1: Recognize Diversity
- Principle 2: Eight Golden Rules of Interface Design
- Principle 3: Prevent Errors

### 3.1 Principle 1: Recognize Diversity

- Usage profiles
- Task profiles
- Interaction styles

"Know Thy User"

- Population profiles
  - e.g., age, gender, physical abilities, education, cultural/ethnic background, training, motivation, goals, personality
- User communities
  - e.g., teachers, nurses, doctors, programmers, museum patrons, librarians, ...
- Different countries
- Location
  - urban vs. rural
- Economic profile
- Disabilities
- Attitude towards using technology
- Specific knowledge
  - e.g., boolean expressions, set theory, foreign languages, map icons, ...

Generic separation (different design goals)

- Novice / first-time user
- Knowledgeable / intermittant user
- Expert / frequent user

#### Novice / first-time user

- no/some knowledge of task
- no knowledge of interface
- interface with instruction, dialog boxes, online help
- restricted vocabulary
- small number of actions
- informative feedback
- constructive, specific error messages
- carefully designed paper manuals
- step-by-step online tutorials

Knowledgeable / intermittent user

- works with many systems, has broad interface concepts
- stable task concepts
- difficulty retaining structure of particular interface
- orderly menu structure
- consistent terminology
- high interface aparency
- consistent action sequences
- meaningful messages
- guides to frequent patterns of usage
- protection from dange to support a relaxes exploration of features and attempts to invoke a partially forgotten action sequence
- online help screens to fill in missing pieces
- well-organized reference manuals

## 3.1 Principle 1: Recognize Diversity- Usage Profiles -

#### Expert / frequent user

- thoroughly familiar with task and interface
- seeks to get work done
- rapid response times
- brief non-distracting feedback
- carries out actions with a few keystrokes / selections (creation of macros)
- accelerators
  - command strings
  - shortcuts through menus
  - abbreviations

## 3.1 Principle 1: Recognize Diversity- Usage Profiles -

Designing for several classes of users

- level-structured (layered, spiral) approach
- permit users to control the density of information feedback

## 3.1 Principle 1: Recognize Diversity- Task Profiles -

## 3.1 Principle 1: Recognize Diversity- Task Profiles -

- Task analysis should be done before UI design
- but often, new commands/features are added incrementally
- Design / implementation convenience should not dictate system functionality
  - High-level actions decomposed into mid-level, atomic actions
  - What is the right set of atomic actions? (RISC, CISC)
  - Shape menu tree according to relative task frequencies

## 3.1 Principle 1: Recognize Diversity- Interaction Styles -

# 3.1 Principle 1: Recognize Diversity- Interaction Styles -

- Direct manipulation
  - appealing to novices
  - easy to remember for intermittent users
  - rapid for frequent users
- Menu selection
  - appropriate for novice, intermittent users
  - can be appealing to experts, if display is rapid
- Form fillin
  - best for knowledgeable, expert users
- Command language
  - for frequent users
- Natural language
  - great goal, limited success so far

- 1. Strive for consistency
- 2. Enable frequent users to use shortcuts
- 3. Offer informative feedback
- 4. Design dialogs to yield closure
- 5. Offer error prevention and simple error handling
- 6. Permit easy reversal of actions
- 7. Support internal locus of control
- 8. Reduce short-term memory load

1. Strive for consistency

- consistent action sequence for similar situations
- identical terminology in prompts, menus, help screens
- consistent color, layout, capitalizations, fonts

some exceptions

2. Enable frequent users to use shortcuts

- abbreviations
- special keys
- hidden commands
- macro facilities

short response time fast display rates

3. Offer informative feedback

- system feed back for every user action
  - modest feedback for frequent/minor actions
  - substantial feedback for infrequent/major actions
- visual presentation of objects of interest often convenient

4. Design dialogs to yield closure

- define action sequences (groups of actions)
  - <beginning> <middle> <end>
- feedback at completion of a group of actions
  - satisfaction of accomplishment for user
  - sense of relief
  - signal to drop contingency plans
  - indication that the way is clear for next group of actions

5. Offer error prevention and simple error handling

- design systems s.t. users cannot make serious errors
  - prefer menu selection over form fillin
  - do not allow alphabetic characters in numeric entry fields
- detect errors, give simple constructive specific instructions for recovery
  - users should not have to retype an entire command
- errorneous actions should leave system state unchanged or system should bive instructions how to restore the previous state

6. Permit easy reversal of actions

- relieve user anxiety
- units of reversability
  - single action
  - data entry task
  - complete group of actions

- 7. Support internal locus of control (experts)
- avoid "acausality":
  - surprising system actions
  - tedious sequences of data entries
  - inability or difficulty in obtaining necessary information
  - inability to produce the action desired
- users should be the initiators of actions rather than the responders to actions

8. Reduce short-term memory load

- "Humans can remember seven ± two chunks"
  - displays must be kept simple
  - multiple page displays must be consolidated
  - frequency of window motion must be reduced
  - sufficient training time for codes, mnemonics, sequences of actions
  - online access to command-syntax form, abbreviations, codes.

### 3.3 Principle 3: Prevent Errors

- Avoid "slips"
  - organize screens, menus functionally
  - design commands / menu choices to be distinctive
  - make it difficult for users to take irreversible actions
  - no modes!
  - feedback about system state
  - design command consistence

### 3.3 Principle 3: Prevent Errors

- Correct matching pairs
- Complete sequences
- Correct commands

### 4. Guidelines

#### 4. Guidelines

- Guidelines for Data Display
- Guidelines for Data Entry
- Balance of Automation and Human Control

### 4.1 Guidelines for Data Display

- Organizing the display
- Getting the user's attention

- Consistency of data display
- Efficient information assimilation by the user
- Mimimal memory load on user
- Compatibility of data display with data entry
- Flexibility for user control of data display

Consistency of data display

- standardized
  - terminology
  - abbreviations
  - formats
  - colors
  - capitalization

provide a written (or computer-managed) dictionary

Efficient information assimilation by the user

- familiar format, related to tasks performed on the data
  - neat columns of data
  - left justification for alphanumeric data
  - right justification for integers
  - lining up of decimal ponts
  - proper spacing
  - comprehensible labels
  - appropriate measurement units and numbers of decimal digits

Mimimal memory load on user

- don't require users to remember information from one screen to another
- task completion with few actions, minimizing chance to forget a step
- labels and common should be provided for novices and intermittent users

Compatibility of data display with data entry

- data display similar to data entry
- if possible: editable output fields

Flexibility for user control of data display

- user-definable order of columns
- user-definable sorting of rows

# 4.1 Guidelines for Data Display- Getting the User's Attention -

- Critical situations
  - exceptional conditions
  - time-dependent information

- Level of intensity (<= 2)
- Marking styles
- Size (<= 4)
- Fonts (<= 3)
- Inverse video
- Blinking
- Colors (<= 4)
- Color blinking
- Audio

## 4.1 Guidelines for Data Display- Getting the User's Attention -

- Beware of cluttered displays by overusing techniques
- For novices:
  - simple
  - logically organized
  - well-labelled displays
- For experts:
  - extensive labels on fields
  - subtle highlighting
  - positional presentation

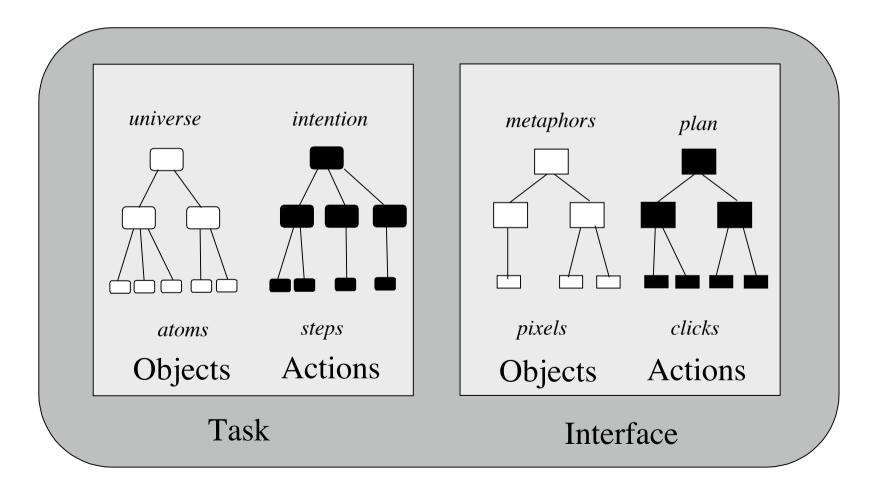
## 4.2 Guidelines for Data Entry

- Consistency of data-entry transitions
  - similar sequences of actions
  - similar delimiters
  - similar abbreviations
- Miminal input actions by users
  - making a clear choice by a single keystroke, mouseclick,...
  - select from a list of choices (to reduce short term memory load)
  - but: hand-motion is worse than typing some characters
  - avoid redundant data entry
- Miminal memory load on users
- Compatibility of data entry with data display
- Flexibility for user control of data entry

## 4.3 Balance of Automation and Human Control

- Simplify the user's task by eliminating human actions when no judgement is required
- Computers:
  - keep track of and retrieve large volumes of data
  - follow preset patterns
  - carry out complex mathematical or logical operations
- Critical human role:
  - world is an open system
  - computer is a closed system

Fred Brooks: IA > AI


## 4.3 Balance of Automation and Human Control

- Human judgement for unpredicatble events
  - incomplete/errorneous data
  - respond to unanticipated situations
  - equipment failure
  - unproper human performance
- Humans must be continually involved s.t. they are well informed and can take over in emergencies

### 4.3 Balance of Automation and Human Control

- Autonomous agents with personalities
- User model to guide system adaptation
- If an adaptive system makes surprising changes, users must pause to see what has happened

## 2.2 Object-Action Interface Model - General Concept: OAI -

