
Augmented Reality II
Software Tools for User Interfaces

Gudrun Klinker
June 29, 2004

Outline

1. Specification Methods
2. Interface-Building Tools
3. Evaluation and Critiquing Tools

Literature

• Ben Shneiderman, “Designing the User
Interface, Strategies for Effective Human-
Computer Interaction”, Addison Wesley.
(Chapter 5)

1. Specification Methods

1. Specification Methods

Use tools rather than “handcraft” every system

• Grammars
• Menu-selection, dialog-box trees
• Transition diagrams
• State charts
• User-action notation (UAN)

1.1 Grammars
• BNF (context-free)

<Telephone book entry> ::= <Name> <Telephone number>
<Name> ::= <Last name>, <First name>
<Last name> ::= <string>
<string> ::= <character> | <character> <string>

needs to be supplemented by adhoc techniques to
specify semantics

• Pro:
– concise representation
– existing tools (parsers)

• Con:
– difficult to follow with growing number of specifications
– confusing to many users

1.1 Grammars
Multiparty grammars [Shneiderman]
• to accomodate richness of interactive software

<Session> ::= <U: Opening> <C: Responding>
<U: Opening> ::= LOGIN <U: Name>
<U: Name> ::= <U: string>
<C: Responding> ::= HELLO [<U: Name>]

• Pro:
– good for text-oriented command sequences

• Con:
– not so good for 2D widgets (menus, form fillins, direct

manipulation)
– concept of (widget) tree structure and traversal is difficult

to support

1.2 Menu-selection, dialog-box trees
Menu-selection tree

Format
Font...
Bullets and Numbering...
Alignment

Left
Right
...

Line Spacing...
...

• needs to be laid out on a large wall
• important to see the entire structure at once for

– consistency
– completeness
– lack of redundancy and ambiguity

1.2 Menu-selection, dialog-box trees

• Pro:
– simple structure to guide designer and users
– online tools to help construct and draw the trees
– good to get an overview

• high-level relationships
• low-level details

1.2 Menu-selection, dialog-box trees

• Con:
menu trees incomplete
– do not show entire structure of all possible

users actions
• returns to previous menu
• jumps to startin menu
• detours to error handling on help screens

– would clutter the clean structure of a menu tree

1.3 Transition diagrams

start

error quit help

sleep
<action 1>

<action 2>

<action 3>
!

‘1’
‘2’

‘3’

‘4’, ‘?’‘5’

30’’

+

• Requires large prints on walls
• e.g. used to show interaction on 350 screens of a satellite
 control system

1.3 Transition diagrams

• Pro:
– more precise specification of every possible

transition
– tools to create and maintain transition diagrams

as part of CASE tools
– helpful in design and training

1.3 Transition diagrams

• Con:
easily becomes large and confusing
– only modular if nodes are included with subgraphs
– confusing when each node

• has a link to a help state
• jumps back to previous state
• goes to start state
• quit state

– problems with concurrency or synchronization (except
for Petri nets)

1.4 State charts [D. Harel]

• grouping feature: nested roundtangles
• repeated transitions factored out to

surrounding roundtangle
Bank transactions

Help

Quit
Get
Cash

Deposit
Checks

Id #
verify

‘?’

‘1’

‘1’

‘2’

‘2’

enter
ID #

Quit

Back

1.4 State charts

Extensions:
– concurrency
– external interrupt events
– user actions
– dataflow specifications
– constraint specifications
– embedded screen prints

1.4 State charts

• Con:
good for menus, commands, form fillins,
but clumsy for direct manipulation
– cannot cope conveniently with variety of

permissable actions and system-provided visual
feedback

– direct manipulation interfaces depend heavily
on context to determine meaning of input (e.g.,
current cursor position)

1.5 User-action notation (UAN)

high-level notations
• focus on users’ tasks
• deal with pointing, dragging, clicking
• describe interface feedback

User Actions Interface Feedback Interface State
~[icon] Mv icon!
M^

~[file] Mv file!, forall(file!): file- ! selected = file
~[x,y]* outline(file) > ~
~[trash] erase(file), trash!! selected = null

1.5 User-action notation (UAN)

• Pro:
– high-level approach to specify system behavior

and user action
• Con:

– takes time to get used to
– no convenient specification of rich graphics

(drawing programs, animations, relationships
across tasks, interrupt behavior)

2. Interface-Building Tools

2. Interface-Building Tools

• General remarks
• Design tools
• Software engineering tools

2.1 General remarks
(Interface building tools)

Features of user-interface-building tools
• User-interface independence

(decoupling of the user-interface design
from the complexities of programming)
– Separate interface design from internals
– Enable multiple user-interface strategies
– Enable multiple-platform support
– Establish role of user-interface architect
– Enforce standards

2.1 General remarks
(Interface building tools)

Features of user-interface-building tools
• Methodology and notation

– Develop design procedures
– Find ways to talk about design
– Create project management

2.1 General remarks
(Interface building tools)

Features of user-interface-building tools
• Rapid prototyping

– Try out ideas very early
– Test, revise, test, revise, ...
– Engage end users, managers, and customers

2.1 General remarks
(Interface building tools)

Features of user-interface-building tools
• Software support

– Increase productivity
– Offer constraint and consistency checks
– Facilitate team approaches
– Ease maintenance

2.2 Design tools

• Create quick sketches
– explore multiple alternatives
– allow communication with the design team
– convey concepts to clients

2.2 Design tools

• UI mockups with
– paper and pencil
– word processor
– slide shows

– computer-assisted instruction software (Authorware)
– multimedia construction tools (Macromedia Director)

2.2 Design tools

• UI mockups: e.g.:
– slide show of still images
– allow users to interact w. prototype (push buttons)

navigation through screens

2.2 Design tools
• Visual editing tools

– designers can interactively create layouts
• Visual programming tools

– Prograph, LabVIEW, AVS
– edit, execute, debug, make changes during execution
– emphasize data flow, flowchart-like presentation
– deeply neested modular structure

• level 1: use existing widgets
• level 2: program new widgets

Demos:
– AVS
– CAR

2.3 Software engineering tools
Toolkits (to be used in programs)
• common widgets (windows, scrollbars, ...)
• programming languages with accompanying widget

libraries
• Pro:

– familiar to experienced programmers
– great flexibility
– extensive control in creating the UI

• Con
– requires months of learning
– large burden of creating an application
– maintenance is difficult
– only partial support for consistency
– designers/managers depend heavily on experienced programmers

2.3 Software engineering tools
Toolkits (to be used in programs)
• Tcl/TK (Ousterhout 94)

– Tcl:
• interpreted command language
• cross-platform

– Tk:
• relatively easy/simple to set up a user interface
• text, canvas
• no visual editor

menubutton .menu1 -text “Unix commands” -menu .menu1.m -underline 0
menu .menu1.m
.menu1.m add command -label “List files” -command {ls}
.menu1.m add command -label “Get date” -command {date}
pack .menu1

2.3 Software engineering tools

Toolkits (to be used in programs)
• Java

– programming language, especially for WWW
– applets run on client machine
– object oriented - but less complex than C++
– automatic garbage collection
– no pointers

• Javascript
– embedded in HTML
– network distribution
– cross-platform compatiblity

3. Evaluation and Critiquing Tools

3. Evaluation and Critiquing Tools

• Add procedures to software tools that
evaluate/critique user interfaces
– simple metrics (size of user interface project)

• numbers of displays, widgets, links between displays
– more complex

• depth of menu tree
• redundancies
• consistent use of widget labels
• proper transitions for all buttons

3. Evaluation and Critiquing Tools

• run-time logging software
– users’ activity patterns
– reports (Display Analysis Program [Tullis 88])

• frequency of error messages
• menu-item selection
• dialog-box appearance
• help invocation
• form-field usage
• web-page access

AVS

TDE: Telecollaborative Data
Exploration

Basic example

TDE: Telecollaborative Data
Exploration

Transformation logging

TDE: Telecollaborative Data
Exploration

Tele-collaboration

