Einführung in die Erweiterte Realität

- 5. Mixed Reality, Information Presentation -

Gudrun Klinker Nov 18, 2003

Agenda

- A Taxonomy of Real and Virtual World Display Integration (Paul Milgram & Herman Colquhoun Jr, ISMR'99)
- 2. Augmented maintenance of powerplants: A prototyping case study of a mobile AR system (Klinker et al, ISAR'01)

A Taxonomy of Real and Virtual World Display Integration (Milgram & Colquhoun)

What is Augmented Reality ???

- Augmentations shown in HMDs ("classical AR").
- Augmentations shown on other displays ("any case in which an otherwise real environment is augmented by means of virtual objects").
- Any mixture of real and virtual environments.

Reality-Virtuality Continuum

Real Environment	Reality-Virtuality (RV) Continuum	Virtual Environment
World Unmodelled	Extent of World Knowledge (EWK) Contin	world Completely Modelled

(a) Augmented Reality (AR)

(b) Augmented Virtuality (AV)

Augmented Reality Occluded Reality Diminished Reality

Reality Models

Virtual Studios Virtual Models

Mixed Reality

Remote Mixed Reality Excavation: - Long-distance Tele-Operation -

- Real site:
 - Video more detailed than model
 - Large time lag
- Control site:
 - Simulated operations
- Issues
 - Display centricity
 - Control-display mapping

Display Centricity

Control-Display Mapping

Congruent			Incongruent	
Direct Control	(Isomorphism)	Indirect Control (Tool Use)		
	ıt		C/D Offset	
C/D Alignmen				

AR Taxonomy

STARS

Augmented maintenance of powerplants: A prototyping case study of a mobile AR system

G. Klinker, O. Creighton, A.H. Dutoit, R. Kobylinski,
C. Vilsmeier, B. Bruegge Technische Universität München
Lehrstuhl for Applied Software Engineering Institut für Informatik Munich, Germany

Contact; klinker@in.tum.de

Outline

- Goals & approach
- Motivation
- Problem domain
 - Current situation
 - Visionary situation
- STARS architecture
- Results
- Lessons learned

Goals & Approach

Long term goal:

• Provide an AR framework enabling information system developers to reuse and adapt AR components to their application domain.

Approach

- Conduct a series of case studies, prototyping with real clients visionary AR applications.
- Improve framework with lessons learned.

This presentation

• STARS case study in nuclear power plant maintenance ("Praktikum" at CMU and TU Munich).

Motivation

- Industrial settings of mobile AR systems introduce new issues in information systems:
 - Information storage and modeling
 - Transmission of information to the user
 - Visualization of massive information
- Current research focus in AR typically on:
 - Robust tracking
 - 3D graphics with HMD
- Related work:
 - Feiner et al.
 - Curtis et al.
 - ARVIKA

Problem domain: Nuclear powerplants

Conflicting criteria:

- Regulation compliance, safety
- Cost
- Parallel work

Highly encoded preventive maintenance procedure

Current system is paperbased

Current situation

He-System bis zu den geschlo	ssenen Ventilen	evakuieren,	
dazu			
Ventil, H	V2000	zu	Vor F-Bau I
Vakuumpumpe	P5001/1	EIN	G-Haus
Vakuumpumpe	P5001/2	EIN	G-Haus
Ventil, H	V5003/1	AUY	G-Baus
Ventil, H	V5003/2	AUP	G-Haus
Ventil, H	V2056	AUF	G-Baus
Warten (evakuieren) bis			
Druckanzeige an			
MeBstelle (Evakuier-Samelleitung)	P15009	1.10 ⁻¹ bar abs	G-Haus
dsnn			
Ventil, H	V2056	ZU	G-Haus

Visionary situation: IETMs

- Interactive Electronic
 Technical Manuals
- Hierarchical, executable procedures, analog to a computer program.
- Steps are organized in conditional statements and in loops.
- Already used in aircraft maintenance.

■ XML	aŭ							
DOC	TYPE tech	inf	0					
A tech	info	0.00	909					
=	id	idi						
E E	name	Helium Flushing System						
=	starttopic	id100						
	system							
		=	id id10					
		= nan	name task	He	= id id100			
				-	name	Bimo	athly Check r	d Helium Ekistring Sustem
				iii	sten.ean (/)			
					Juck	= id	() step	() loop-step
					1	id2	step (0)	C coop coop
					2	id3	■ step (3)	
						184		E loop-step
								= id id41
								expression
		L						≡ id id410
								🗮 expression idvid411
								🔳 🗈 Id=id412
								expression idvid413
								🗮 🗮 step-seq idvid420
		1月	1	4	id5	🗑 step (1)		
			 partin 	fo = name		heliur	n	
			=	id	id61			
					partba	sse pa	rinum=He id	idő namerhelium bottle
					locati	on idm	d61001 loca	lion-x=42 location-y=9

Visionary situation: HMD

- The technician wears an HMD
- Augmentations indicate device Ids
- Individual devices involved in the procedure are emphasized.

Visionary situation: LCD

- High density information is displayed on an LCD plate
- The HMD display can be flipped up to enable the technician to examine the LCD plate.
- The LCD plate is stowed away when not needed.

Constraints & Challenges

- Wireless network
 - Mobile client should be able to function, even in the absence of a network connection
- Multimodal user interface
 - User must be able to select a user interface mode most appropriate to its work and environment
 - Speech, AR, LCD-plate, mouse, [smartcard, iButton]
- Legacy information
 - Current maintenance manuals are on paper
 - Need to be converted into IETMs
 - Need to be related with geometrical world model

STARS Architecture

Database

Interface

STARS Subsystems

IETM

- Interpreter is separated from the database and runs on client
- Enables execution of procedure in the absence of connection

Network

- Transparent retrieval of IETMs and supporting material (video, audio, etc.)
- Prefetch and caching based on:
 - Location
 - Work order
 - satistical analysis of history

User Interface/AR

- Tsai tracking
- High-level commands between UI and AR

STARS Subsystems : IETMs (Interactive Electronic Technical Manuals)

- Specification by DoD (SGML or XML)
 - MIL-M-87268: behave and look
 - MIL-M-87269: database spec & DTD
- in STARS: XML
 formated IETMS
 (DTD derived from 87269)

STARS Subsystems: IETM Overview

- Interpreter is separated from the database and runs on client
- Enables execution of procedure in the absence of connection

STARS Subsystems: Network

- Transparent retrieval of IETMs and supporting material (video, audio, etc.) across unreliable network connections
- Prefetching and caching

STARS Subsystems: Network

Prefetching and caching based on

- location
- work order
- statistical analysis of history

STARS Subsystems: User Interface

- Permanent maintenance support by showing single work steps and involved items
- Support through technical multimedia documents: Texts, AR, 2D graphs, movies, images, pdf-documents
- Input modes:
 Speech, recognition, keyboard input, access card, iButton
- Output modes:
 HMD, LCD plate, speech synthesis

STARS Subsystems: User Interface

STARS Subsystems: Augmented Reality

Ingredients:

- Physical mockup
- Virtual model (OpenGL, VRML)
- 2D tracking (normalized cross-correlation)
- 3D calibration (Tsai)
- 3D rendering (OpenGL)
- Connection to user interface component (CORBA)

STARS Subsystems: Augmented Reality

STARS Subsystems: Augmented Reality

Augmented rendering

- Connection to the user interface component:
 - Highlight object (obj, form)
 - Label object (obj, text)
 - Display information (text, screenpos): id
 - Clear information (id)
 - Set compass (object, form)
 - Is visible (obj): bool
- Geometric primitives
 - Objects with unique ids, geometric & photometric descriptions, local transformations
 - Optional labeling string + transformation
 - Transformation for arrow placement
 - Drawing style: normal (full, wireframe), highlighted, not drawn

Results

Prototype implementation focusing on

- Network
- User Interface/AR mode
- Rudimentary implementation of IETM subsystem

Two hour demo with customer (Siemens Nuclear Power):

- Helium Flushing procedure
- Simulated variety of situations and UI modes

Lessons learned

- Linking geometrical information models
 - Geometrical model is usually not present in explicit form in the legacy information
 - Manually linking geometrical models and legacy information is costly, if feasible
 - Need for AR authoring system for creating such links.
- Generic AR components
 - Current standards (VRML) defined for visualization
 - AR requires more dynamic languages, enabling the interactive manipulation of geometrical models
 - Need for domain independent interface between AR and UI

Lessons learned (2)

- Multi-model user interface
 - AR is only one of several user interface modes
 - An AR view needs to interact with other user interface components and views.
 - Need for a component oriented view of AR systems.
- Mobile and unreliable networks
 - AR systems are often mobile
 - Rely on wireless networks for data exchange, unreliable and low bandwidth
 - Geometrical models and related information models are usually large
 - Need for a network component for shielding the system from crashes and low bandwidth

Acknowledgments

Coauthors: Oliver Creighton, Allen Dutoit, Rafael Kobylinski, Christoph Vilsmeier, Bernd Brügge

Students and coaches both at TUM and CMU

Clients: Erwin Rusitschka (Framatome ANP; ARVIKA), Dick Martin (Inmedius, CMU)

