
Einführung in die Erweiterte Realität

- 7. Context Toolkit -

Gudrun Klinker
Dec. 2, 2003

Literature

• Anind K. Dey, Gregory D. Abowd, and Danieal Salber,
“A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware
Applications”, Human-Computer Interaction Journal
(HCI) special issue on context-aware computing, Vol.
16 (2-4), 2001, pp. 97-166,
http://www.cc.gatech.edu/fce/contexttoolkit

• Anind K. Dey, “Providing Architectural Support for
Building Context-Aware Applications”, Ph.D. Thesis,
Georgia Institute of Technology, Nov. 2000.

Introduction

Introduction

• User interfaces aside from the traditional desktop
environment -> Ubiquitous Computing

• Context for Human-Computer-Interaction provided by
physical and electronic environment -> Context-Aware
Computing

• Context automatically sensed in a physical environment
• Implicit input to positively affect an application
-> Location-based services

Introduction

• Needed: Conceptual models and tools to
support the rapid development of rich
context-aware applications.

• General understanding:
– What is a context
– What can it be used for

Introduction
- Difficulties of Handling Context -

• For designers:
– No conceptual tools and methods to account for context-

awarenes.
– Choice of context often defined by availability of hardware

and software sensors (sensor-driven approach)
• For developers:

– Distribution of context across several places
-> Distributed networks of sensors

– Mobile users in a highly dynamic environment
-> Diverse platforms

• Needed: System for iterative development, easy to
modify, reusable

Definition: Context

• Any information that can be used to characterize
the situation of entities that are considered
relevant to the interaction between a user and an
application.

• Typically: Location, identity and state of people,
groups and computational and physical objects.

• Both implicit and explicit user input!
• Here: Context doesn’t have to be acquired

automatically

Categories of Context

• Entities
– Places
– People / Groups
– Things

• Categories
– Identity
– Location (6 DOF)
– Status (Activity) (Intrinsic characteristics of an entity)
– Time

• Inference (derivation) of higher context attributes

Context-Aware Functions

• Presentation of information and services
• Automatic execution of a service
• Attaching context information for later

retrieval

Requirements for Dealing with
Context

Requirements for Dealing with
Context

1. Separation of concerns
2. Context interpretation
3. Transparent, distributed communications
4. Constant availability of context

acquisition
5. Context storage
6. Resource discovery

Req1: Separation of Concerns

• Separation between
– Acquisition of context (low-level details of

individual sensors)
– Handling of context (application semantics)

• GUIs: user input is handled by Widgets.
– Querying mechanism
– Notifying (callback) mechanism
– Common external interface for all widgets

Req 2: Context Interpretation

• Multiple layers of context data
• Transparent recursive interpretation

Req 3: Transparent, Distributed
Communications

• Distributed sensors
• Distributed services
• Multiple applications

 Fact that communication is distributed should be
transparent to both sensors and applications.

 Relieve the designer of having to build a
communications framework!

 Needed: Global timeclock mechanism

Req 4: Constant Availability of
Context Acquisition

• Context-aware applications should not
instantiate individual sensors to acquire
context data.

• Context acquisition modules must operate
independently of specific applications.

• Available all the time!

Req 5: Context Storage

• Use of historical context information to
– establish trends
– predict future context values

• Architecture must support storage of
context.

Req 6: Resource Discovery

• Information prior to establishing a
communication: Application -> Sensor:
– What kind of information does a sensor provide?
– Where is it located? (Hostname, port)
– How can an application communicate with it?

-> Central resource discovery mechanism

Context Abstractions

Context Abstractions

1. Context widgets
2. Interpreters
3. Aggregators
4. Services
5. Discoverers

Context Abstractions
- 1. Context Widgets -

• Analog to GUI Widgets
• Benefits:

– Hide the complexity of the acutal sensor
– Abstract context information to suit the expected needs

of an application
– Provide reusable and customizable building blocks

• Context widgets encapsulate context information and
provide methods to access it like a GUI widget (query and
notify mechanisms)

• Context widgets provide abstractions that encapsulate
acquisition and handling of a piece of context information

• Every attribute is represented by a context widget.

Context Abstractions
- 2. Interpreters -

• Raise the level of abstraction of a piece of context!
• Transform context by taking information from one

or more context sources and producing a new
piece of information

• Traditionally done inside an application.
• Now: separated from applications into reusable

interpreter modules -> reusable
• Common interface to all interpreters.

Context Abstractions
- 3. Aggregators -

• Collecting pieces of context information
that are logically related into a common
repository

• E.g: gather information from distributed
sensors

• “One-stop-shop”
• Every entity is represented by an aggregator

Context Abstractions
- 4. Services -

• Components in the framework that execute
actions on behalf of applications

• Context service: responsible for controlling
or changing state information in the
environment using an acutator (output).

• Synchronous or asynchronous.

Context Abstractions
- 5. Discoverers -

• Maintain a registry of what capabilities exist in a
framework.

• When a component is started, it notifies a discoverer of its
presence, capabilities, and contact information.

• Discoverer removes components from the list, when they
do not respond.

• Component lookups:
– White pages
– Yellow pages

• Status information provided via
– notification (publisher/subscriber)
– querying (polling)

Using the Conceptual Framework

Using the Conceptual Framework

Active Badge Call-Forwarding

Mobile Tour Guide

The Context Toolkit

The Context Toolkit
 Each component implemented as a single process,

distributed across different processors, using
peer-to-peer communication.
Java, C++, Frontier, Visual Basic, Python

1. Distributed communications
2. Subscriptions
3. Event handling
4. Discovery
5. Context Services

Context Toolkit
- 1. Distributed Communications

-
• HTTP, XML, TCP/IP (no CORBA, Java RMI !)
• Portable across unconventional, custom-built platforms

(wearable computers, pagers, mobile phones, off-the-shelf
custom sensors)

• Limited scalability

• Encapsulated in
component ‘BaseObject’
– handle
– communication

Context Toolkit
- 2. Subscriptions -

• Lists of subscribers
• Filters

Context Toolkit
- 3. Event Handling -

• Dealing with new context data (context modification)
– by widget:

• detection by widget
• timestamp
• subscriber notification

– by subsequent components
(interpreters, aggregators):

• context modifications
– propagated through a distributed network

• no unique sequence (timing), parallelism
– all components must always be ready to process event
– new thread per event

Context Toolkit
- 4. Discovery -

• Centralized component
– simple
– but: single point of failure
– pluggable (easily replaceable)

• At start time all components register with the
discoverer at a known network address and port

• Discoverer ‘pings’ components to verify that they
are still active

• Applications don’t register with the discoverer but
directly with widgets, aggregators and interpreters

Context Toolkit
- 5. Context Services -

• Incorporated into widgets for simpler
treatment by application designer

• Widget responsible for both input (sensors)
and output (actuators, services)

Context Toolkit
-6. Space of Context-Aware

Applications -
• The toolkit was used in a number of

applications to
– test that the abstractions were suitable to

application designers

Context-Aware Applications

Context-Aware Applications

1. In/out board
2. Context-aware mailing list
3. DUMMBO: evolution of non-context-aware

applications
4. Intercom: use of complex context and services
5. Conference assistant: use of complex context and

systematic design of a context-aware application

Application 1: In/Out Board
- Application Description -

• Lab-based viewer (stationary on site)
• Web-based viewer (remote)
• Wearable viewer (mobile)

• iButton-based tracker
• RF-based tracker

Application 1: In/Out Board
- Building the Application -

Application 2: Context-Aware
Mailing List

Application 3: DUMMBO
- Application Description -

• Dynamic Ubiquitous Mobile Meeting BOard
• Existing application

Application 3: DUMMBO
- Application Description -

Application 3: DUMMBO
- Building the Application -

Application 3: DUMMBO
- Toolkit Support -

• Existing application DUMMBO, changed by
original researchers (not by toolkit developers)
– install toolkit
– determine context widgets (multiple widgets)
– instantiate widgets
– handle callbacks

– 25 lines of Java code

Application 4: Intercom
- Application Description -

• One-way and two-way conversations in instrumented
homes (AwareHomeResearchInitiative).

• “House, I would like to announce”
– “Go ahead”
– “Dinner is ready in the kitchen”
– “Stop the intercom”

• “House, how is the baby doing?”
• “House, I want to speak to Sam”

– “Sam is with Barbara. Do you want to talk to both?”
• Dynamic rerouting according to room changes

Application 4: Intercom
- Building the Application -

Application 4: Intercom
- Toolkit Support -

• Application written by researchers not
involved in the developing the toolkit.

• More sophisticated contexts
– intepreted (dep. on previous utterances)
– aggregated

• room-based
• person-based

Application 5: Conference Assistant
- Application Description -

• Technical conference with parallel sessions, group of
attendants (friends)
– General: personalized schedule, location of rooms
– Room-based: ongoing session, current presentation, URLs,

miniature slides, audio, video
– Personalized: note-taking, marked-up slides, rating of presentation
– Group-based: location of friends, attended sessions, current

interests in sessions
– Post-conference: access to conference web-site to retrieve slides,

videos etc. of attended/unattended, personal notes

Application 5: Conference Assistant
- Application Description -

• General: personalized schedule, location of
rooms

Application 5: Conference Assistant
- Application Description -

• Room-based: ongoing session, current
presentation, URLs, miniature slides, audio, video

• Personalized: note-taking, marked-up slides,
rating of presentation

Application 5: Conference Assistant
- Application Description -

• Group-based: location of friends, attended
sessions, current interests in sessions

Application 5: Conference Assistant
- Application Description -

• Post-conference: access to conference web-site to
retrieve slides, videos etc. of attended/unattended,
personal notes

Application 5: Conference Assistant
- Applying the Design Methodology -

• Entities and their Context Attributes

Application 5: Conference Assistant
- Applying the Design Methodology -

• Quality of Service Requirements
– user location (3 non-contiguous rooms, low resolution)

• high coverage
• mediate frequency, timeliness

– current slide, web page
• high timeliness (instant presentation upon room entry)

– level of interest of users
• high coverage, availability
• low timeliness

Application 5: Conference Assistant
- Applying the Design Methodology -

• Sensors
– Current slide, web page

• inter-application communication (COM/DCOM)
– Level of interest

• manual user input
– User location

• Active Badges (Olivetti) [IR-transmitting badges]
• iButtons (Dallas Semiconductor) [button devices]
• 3D-iD (Pinpoint) [RF active tags]

Application 5: Conference Assistant
- Building the Application -

Issues

• Representation and acquisition of context
• Privacy
• Ambituity in context data
• Higher-level programming abstractions

Requirements and Conceptual
Framework for Handling Context
• Guiding principle:

Separation of concerns between
– context acquisition and
– use of context

• Abstractions to
– acquire
– collect
– manage

context
in an application-independent fashion.
• Analog to the development of GUIs.

Application 5: Conference Assistant
- Applying the Design Methodology -

• Software Design

