Einführung in die Erweiterte Realität

- 8. System Architectures for AR -

Gudrun Klinker
Dec 9, 2003
Augmented reality

- Immersivity
 - tracker sensor input -
 - near real-time performance -
 - many communication types -

Mobile context-aware augmented reality

- Distribution
 - combination of local and remote devices -
 - ad hoc system -
 - alternate devices -
 - interdependency -
 - integration of unknown components -
 - new applications -

Context-aware computing

- Adaptivity
 - sensor input -
 - reconfiguration -
 - context refinement -
 - automatic adaptation -
 - user-directed adaptation -

Ubiquitous computing
Overview

- Architecture for a Mobile AR System
- Architecture for Distributed Tracking
- DWARF
Architecture for a Mobile AR System
Architecture of a mobile AR System

- Mobile Sensor(s)
- Local Tracking & Sensor Fusion
- 3D Scene Model
- Rendering & Augmentation
- Virtual Objects
- Mobile Display(s)
Architecture of a mobile AR System

- Mobile Sensor(s)
- Wearable User Input
- Local Tracking & Sensor Fusion
- Multi-modal Input Interpretation
- 3D Scene & User Model
- Virtual Objects
- Rendering & Augmentation
- Mobile Display(s)
Architecture of a mobile AR System

- Mobile Sensor(s)
- Wearable User Input
- Multi-modal Input Interpretation
- Dynamic Information Access & Visualization
- Wireless Communication
- Local Tracking & Sensor Fusion
- 3D Scene & User Model
- Local Cache
- Rendering & Augmentation
- Mobile Display(s)
Architecture of a mobile AR System

- Mobile Sensor(s)
- Wearable User Input
- Multi-modal Input Interpretation
- 3D Scene & User Model
- Dynamic Information Access & Visualization
- Local Tracking & Sensor Fusion
- Local Cache
- Rendering & Augmentation
- Mobile Display(s)
Architecture for Distributed Tracking
Hypothesis

• Dynamic scene analysis with a single mobile camera is very difficult:
 – user motion
 – mobile objects in the scene

• Simplifications in applications:
 – known stationary 3D features
 – stationary sensors/cameras in the environment

→ “AR-ready” intelligent environments
Examples
Intelligent Environments (MIT)

MIT AI Lab
Interactive Rooms

MIT Media Lab
Kidsroom, ALIVE
Example
Virtualized™ Reality (CMU)
Distributed Tracking for AR
- Concepts -

- Several stationary sensors and displays in suitable locations
- Wearable mobile sensors and displays
- Non-proprietary communication protocols between mobile and stationary components
Distributed Tracking for AR
- Setup -
Distributed Tracking

• **Stationary (pre-calibrated) units**: Track the mobile unit(s)
• **Central unit**: Triangulate data from several stationary units
• **Transmission** to mobile unit(s): user motion data, 3D features in field of view
• **Mobile unit(s)**: precise tracking
• **Feedback** to stationary units
Distributed Occlusion Detection

- **Stationary units**: Determine silhouettes of mobile objects (e.g. from difference images)
- **Central unit**: Compute convex hulls of mobile objects from several silhouettes
- **Transmission**: Convex hulls
- **Mobile unit(s)**: Occlusion analysis
Distributed Depth Recovery

- **Stationary units:** Compute depth maps (e.g. real-time stereo vision)
- **Central unit:** Combine depth maps into a 3D volumetric model
- **Transmission:** Volumetric Data
- **Mobile unit(s):** Occlusion Analysis, diminished reality, image-based rendering, telepresence, ...
Distributed AR-ready Environment

Stationary Sensors

Dynamic 3D Scene & Action Analysis

3D Scene And User Model

Stationary Tracking

Sensor Fusion

Rendering

Visualization

Synthetic Information

Stationary Displays

Rendering & Augmentation

Local Cache

Mobile Displays

Multi-modal Input Interpretation

Sensor Fusion

Local Tracking

Wearable User Input

Mobile Sensors

Sensor Fusion

Stationary

Wearable

Mobile

Displays

User Input
Important Issues

• Shared networks: Quality of service
• Bottlenecks
• Mobile agents
• Load balancing
• Adaptation to: task, user, position, time, ...
• Security (access rights)
• Safety, user acceptance (gadget or information overload): NO OCCLUDED REALITY
Appropriate User Interfaces

• Multi-media Output: which display for what kind of data?
• Multi-media Input: which interaction method in which situation? Speed of data analysis, complexity of the „communication language“
• Many possibilities to confuse the user!
• Sensor (concentration) overload? Motion sickness
An AR Software Architecture: DWARF

Distributed Wearable Augmented Reality Framework

with
Martin Bauer
Bernd Brügge
Asa MacWilliams
Thomas Reicher
Christian Sandor
Martin Wagner
Basic Design - Distributed Services

- Software services that can run on different hardware modules.
- Modules are connected by wired or wireless networks.
- Modules can be distributed on the body...
- ...or as external devices in intelligent environments.
- Services discover each other and dynamically cooperate to form a complete system.
Main Elements

• Services providing general functionality
 – General enough to reuse, yet also efficient

• Architecture to fit the services together
 – Generalization of many different AR systems

• Middleware to let services communicate
 – Must allow fast yet flexible communication
Main Services

• First DWARF services cover the basic functionalities for AR applications
 – World model, optical tracker, GPS/compass tracker, tracking manager, user interface engine, VRML viewer, HTML viewer, voice recognition, taskflow engine, context router

• Implementation of services uses well-established and third-party technology
Generic Architecture

- Taskflow Engine
- UI Engine
- Speech
- VRML Display
- Bootstrapping
- Initialization
- Glue Logic
- Path Service
- Print Service
- Context Router
- World Model
- Optical Tracker
- GPS Tracker
- Room Tracker
- Tracking Mgr
- World
- Services
- Information
- User
- Application
Middleware

- To find each other spontaneously and communicate with one another, the DWARF services use CORBA-based middleware.
- This is distributed as local Service Managers on each hardware node to provide fault tolerance.
Middleware Challenges

• Middleware needs to be fast, yet flexible
 – Decomposition into communication and location subsystems
• Middleware should not have to be “in the middle”
 – Distributed service managers
• Services that do not know each other have to cooperate
 – Service descriptions with needs and abilities
Results

• Nearly entire functionality is handled by the DWARF services.
 – Navigation sequence, campus geography, multi-modal I/O, printer location, outdoor tracking, indoor tracking, 3D rendering
• First application design is greatly simplified.
 – Model campus and route in markup languages
 – Bootstrapping, glue logic
• Application implemented in three weeks’ time.
• Network latency remained below 8 ms.
• Has been used in many projects at TUM since 2000.