The EM Algorithm and its Application to Context Estimation

Hauptseminar Machine Learning for Context Aware Computing

Martin Wagner
wagnerm@in.tum.de

Lehrstuhl für angewandte Softwaretechnik
Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany
Summary

- Parametric techniques are often not sufficient.
- **Idea:** Mix several parametric distributions.
- Parameters of mixing components could be found easily if responsible component for every data point would be known.
- **Next Idea:** Treat this relationship as *complementary data*.
- Now the *Expectation Maximization* algorithm can iteratively yield good solutions.
- An Application to skin color blob tracking is shown.
Overview

- Motivation
- Mixture Models
- The EM Algorithm: Overview
- The EM Algorithm: Expectation Step
- The EM Algorithm: Maximization Step
- Application: Skin Color Blob Tracking
Motivation

- General problem: Given a data set $\mathcal{X} = \{x_1, \ldots, x_N\}$, find a suitable distribution modeling the underlying random process $p(x)$.
- We have discussed parametric models $p(x|\theta)$ in detail, especially Gaussian models.
- We will see the power of nonparametric models (i.e. histograms, kernel-based methods) in later talks.
- Both techniques have advantages and drawbacks.
- Why not combine them?
Overview

- Motivation
- Mixture Models
- The EM Algorithm: Overview
- The EM Algorithm: Expectation Step
- The EM Algorithm: Maximization Step
- Application: Skin Color Blob Tracking
Mixture Models

How would you model this distribution?

Mixture of two Gaussians:

$$p(x) = \sum_{j=1}^{M} \pi_j p(x | j)$$

General form of mixture model:

$$p(x) = \sum_{j=1}^{M} \pi_j p(x | j)$$

with $$\sum_{j=1}^{M} \pi_j = 1$$.
How would you model this distribution?

Mixture of two Gaussians:

\[p(x) = 0.3 \mathcal{N}(\mu = 0.5, \sigma = 0.2) + 0.7 \mathcal{N}(2.0, 0.4) \]
• How would you model this distribution?

• Mixture of two Gaussians:

\[p(x) = 0.3n(\mu = 0.5, \sigma = 0.2) + 0.7n(2.0, 0.4) \]

• General form of mixture model:

\[p(x) = \sum_{j=1}^{M} P(j)p(x|j) \]

with

\[\sum_{j=1}^{M} P(j) = 1 \]

\[0 \leq P(j) \leq 1 \]

\[\int p(x|j)dx = 1 \]
Log-likelihood for mixture density:

\[
E = \ln(\mathcal{L}(\Theta|\mathcal{X})) = \ln \prod_{n=1}^{N} p(x_n|\Theta) = \sum_{n=1}^{N} \ln \left(\sum_{j=1}^{M} P(j)p(x_n|j) \right)
\]

Problem: sum of logarithms of sums is hard to optimize!

We postulate existence of unobserved data items \(Z = \{z_1, \ldots, z_N\} \) that tell us from which distribution every \(x_n \) was taken.

Now the likelihood is easier to optimize:

\[
E = \ln(\mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y})) = \ln(P(\mathcal{X}, \mathcal{Z}|\Theta)) = \sum_{n=1}^{N} \ln(P(x_n|z_n)P(z_n))
\]

\[
= \sum_{n=1}^{N} \ln(P(z_n)p_{z_n}(x_n|\theta_{z_n}))
\]
Overview

- Motivation
- Mixture Models
- The EM Algorithm: Overview
- The EM Algorithm: Expectation Step
- The EM Algorithm: Maximization Step
- Application: Skin Color Blob Tracking
The EM Algorithm: Overview

Expectation step:

• Guess some initialization values for parameters \(\theta_j \) of mixture models.
• Use \(\theta_j \)'s to calculate probability distribution of \(Z \) depending on \(x_n \).
• Compute expectation \(\mathcal{E} \) of log likelihood \(E(X, Z) \).

Maximization step:

• Maximize \(\mathcal{E}(E(X, Z)) \) with regard to the following parameters:

 Distribution of \(Z \) : \(P^{new}(j) \)

 Parameters of mixture model : \(\theta_j \)

Iterate both steps:

Until a convergence criteria has been reached.
Overview

- Motivation
- Mixture Models
- The EM Algorithm: Overview
- The EM Algorithm: Expectation Step
- The EM Algorithm: Maximization Step
- Application: Skin Color Blob Tracking
EM Algorithm: Expectation Step (1)

- Start with computation of probability distribution for mixture weights:

\[P^{old}(j|x_n) = \frac{P^{old}(j)p(x_n|\theta_{j}^{old})}{\sum_{l=1}^{M} P^{old}(l)p(x_n|\theta_{l}^{old})} \]

- Compute expectation by trying out all possibilities of \(Z \):

\[\mathcal{E}(E(\mathcal{X})) = \sum_{z_1=1}^{M} \sum_{z_2=1}^{M} \cdots \sum_{z_N=1}^{M} E(\mathcal{X}, Z) \prod_{n=1}^{N} P^{old}(z_n|x_n) \]
EM Algorithm: Expectation Step (2)

- Substitute

\[E(\mathcal{X}, \mathcal{Z}) = \sum_{n=1}^{N} \ln \left(P^{new}(z_n)p(x_n|z_n) \right) \]

- Resulting in

\[\mathcal{E}(E(\mathcal{X}, \mathcal{Z})) = \sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j|x_n) \cdot \ln \left(P^{new}(j) \right) \]

\[+ \sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j|x_n) \cdot \ln \left(p^{new}(x_n|\theta_j^{new}) \right) \]

- Both terms are independent of each other and can be maximized individually.
Overview

- Motivation
- Mixture Models
- The EM Algorithm: Overview
- The EM Algorithm: Expectation Step
- The EM Algorithm: Maximization Step
- Application: Skin Color Blob Tracking
EM Algorithm: Maximization Step (1)

Start with the maximization \mathcal{E} with regard to $P^{new}(j)$:

- Constraint $\sum_{j=1}^{M} P(j) = 1$ handled by Lagrange multiplier λ.
- Set partial derivation to zero:

$$\frac{\partial}{\partial P^{new}(j)} \left[\sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j|x_n) \cdot \ln (P^{new}(j)) + \lambda \left(\sum_{j=1}^{M} P^{new}(j) - 1 \right) \right] = 0$$

- Resulting in $\lambda = -N$ and

$$P^{new}(j) = \frac{1}{N} \cdot \sum_{n=1}^{N} P^{old}(j|x_n)$$

Note: this result is independent of the underlying distribution
EM Algorithm: Maximization Step (2)

Now we try to maximize \mathcal{E} with regard to θ_j^{new}.

- In general, this is extremely hard.

- We assume a very simplistic model: a d-dimensional Gaussian with covariance matrix $\Sigma = \sigma^2 \cdot I$. Now $\theta_j^{new} = (\mu_j, \sigma_j)$ and

$$p^{new}(x_n|\theta_j^{new}) = \frac{1}{(2\pi\sigma^2_j)^{d/2}} \exp \left(-\frac{||x_n - \mu_j||^2}{2\sigma^2_j} \right)$$

- Again, we have the Lagrange multiplier $\lambda = -N$, resulting in:

$$\mu_j^{new} = \frac{\sum_{n=1}^{N} P^{old}(j|x_n)x_n}{\sum_{n=1}^{N} P^{old}(j|x_n)}$$

$$\sigma_j^{new 2} = \frac{1}{d} \cdot \frac{\sum_{n=1}^{N} P^{old}(j|x_n)||x_n - \mu_j^{new}||^2}{\sum_{n=1}^{N} P^{old}(j|x_n)}$$
EM Algorithm: Maximization Step (3)

Computation of maximization is also possible with full covariance matrix:

\[P^{\text{old}}(j|x_n) = \frac{P^{\text{old}}(j) \frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \cdot \exp \left(-\frac{1}{2} (x_n - \mu^{\text{old}}_j)^t \Sigma_j^{-1} (x_n - \mu^{\text{old}}_j) \right)}{\sum_{l=1}^M P^{\text{old}}(l) \frac{1}{(2\pi)^{d/2} |\Sigma_l|^{1/2}} \cdot \exp \left(-\frac{1}{2} (x_n - \mu^{\text{old}}_l)^t \Sigma_l^{-1} (x_n - \mu^{\text{old}}_l) \right)} \]

\[\mu^{\text{new}}_j = \frac{\sum_{n=1}^N P^{\text{old}}(j|x_n) x_n}{\sum_{n=1}^N P^{\text{old}}(j|x_n)} \]

\[\Sigma^{\text{new}}_j = \frac{\sum_{n=1}^N P^{\text{old}}(j|x_n) (x_n - \mu^{\text{new}}_j)(x_n - \mu^{\text{new}}_j)^t}{\sum_{n=1}^N P^{\text{old}}(j|x_n)} \]
Overview

- Motivation
- Mixture Models
- The EM Algorithm: Overview
- The EM Algorithm: Expectation Step
- The EM Algorithm: Maximization Step
- Application: Skin Color Blob Tracking
Application: Skin color detection

Idea: Every pixel is composed of three parameters, *Red, Green* and *Blue*. For skin color, we could model the distribution probability individually in each of these parameters.

Algorithm:

1. Set up mixture model consisting of $M = 3$ 3D Gaussians.
2. Label some sample images by hand (click on skin colored pixels).
3. Let the EM algorithm determine the weights of the mixture model and the parameters (μ_j, σ_j) of the Gaussian distributions.
4. Pre-compute a lookup table containing the probability of being skin color for every color in RGB space.
5. Online classification is now easy: do a lookup and classify current pixel if its probability is above a threshold.
Application: Skin color blob tracking

Algorithm:
1. Extract skin colored pixels from image.
2. Set up Gaussian mixture model with three 2D Gaussians.
3. Feed the skin pixel’s locations \((x, y)\) in the EM algorithm.

Result: Three 2D Gaussians describing head and hands of a person on the image.
Thank you

... any Questions? ...