Machine learning – Nonparametric techniques

Referent: Peter Hallama
Tutor: Martin Wagner
Algorithm Overview

• K-Nearest Neighbour
• Locally Weighted Regression
• Radial Basis Functions
• Case Based Reasoning
• Short Overview Learning Vector Quantization
Problem
K-Nearest Neighbour (k-NN)

- Instances correspond to points in the n-dimensional space \mathbb{R}^n
- Instance $x = (a_1(x), a_2(x), \ldots, a_n(x))$
 $a_r(x) =$ value of the rth Attribute
- Distance is defined
 \[d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_i(x_r) - a_j(x_r))^2} \]
- Returns most common Value
Example 1-NN

1-NN will classify x_q as cross
5-NN as circle
Distance-Weighted NN

- Giving greater weight to closer neighbours
- May weight at the inverse square of the distance
- \(w_i = 1/d(x_q,x_i)^2 \)
Remarks on NN

• Distance calculated based on all attributes
 -> giving the attributes weight by change their Axes by Factor

• Efficient memory indexing (i.e. kd-tree)
 -> More efficiently at some additional cost in Memory
Pro/Contra k-NN

+ Training is very fast
+ Does not lose any Information
- Lazy method / slow at query time
- Irrelevant attributes considered (weight the attributes)
Locally Weighted Regression

• Trying to approximate the target function in the Neighbourhood of x_q using linear/quadratic functions or multilayer neural networks

• Minimizing the squared error over k nearest neighbours
Locally Weighted Linear Regression

- adjust the values of slope and intercept to find the line that best predicts Y from X.
- minimize the sum of the squares of the vertical distances of the points from the line.
Example
Pro/Contra LWR

+ approximates the real target function
+ Does not lose any information
- lazy method / slow at query time
- Irrelevant attributes may be considered
- very slow for complex functions
NN / WNN / LWLR

1-nearest neighbor

\[K(d(x, x)) = \frac{1}{d(x, x)^2} \]
Radial Basis Functions

\[
\hat{f}(x) = \omega_0 + \sum_{u=1}^{K} \omega_u K_u(d(x_u, x))
\]

• \(x_u \) is an instance from \(X \); \(K_u \) decreases as the distance \(d(x_u, x) \) increases

• \(K = \text{number of kernel functions included} \)
Radial Basis Function

output $f(x)$

w_n linear parameters

Kernel functions

$K_n(d(x_n, x)) = \exp(-1/2 \frac{d(x_n, x)^2}{\sigma^2})$

input layer
Pro/Contra RBF

+ linear combination of local approximations leads to global approximation to the target f
+ Closely related to Distance Weighted Regression but eager not lazy
- how to choose the kernel functions?
- how to train the weights?
Case-Based Reasoning

- Not representing in N-dimensional Space
- Solving Problems by reusing and combining portions of previous solutions
- Example the CADET system
- Assist in the conceptual design of simple mechanical devices such as water faucets
- Library containing about 75 previous designs and design fragments
- Instance is represented by describing structure and its qualitative function
Beispiel

CBR Cycle
(Aamodt & Plaza, 1994, AI Communications)
Short Overview Learning Vector Quantization

- Classes Represented by Prototyp Vectors
- Training points attract prototypes of the correct class (LVQ1)
- They may also disattract prototypes of the wrong classes (LVQ2)
- LVQ3 tries to fix some LVQ2 problems.
LVQ Beispiel
Benchmark on Spam mail

• Benchmark setup:
• Mixture of spam messages and messages received via a mailinglist ratio 481: 2412 = 16,6 % spam
• Algorithms: Naive Bayesian / TiMBL
TiMBL

- Variant of k-NN
- Doesn’t consider only the k-nearest but all instances at the k-closest distance
- This could lead to a high number of instances
TCR definition

- $N_{L\rightarrow L}$ Number of legal mail classified as legal $N_{L\rightarrow S} =$ legal mail classified as spam

\[
Acc = \frac{N_{L\rightarrow L} + N_{S\rightarrow S}}{N_L + N_S}
\]

\[
Err = \frac{N_{L\rightarrow S} + N_{S\rightarrow L}}{N_L + N_S}
\]

- Weighting the legal mail λ-times more than spam messages

\[
WAcc = \frac{\lambda \cdot N_{L\rightarrow L} + N_{S\rightarrow S}}{\lambda \cdot N_L + N_S}
\]

\[
WErr = \frac{\lambda \cdot N_{L\rightarrow S} + N_{S\rightarrow L}}{\lambda \cdot N_L + N_S}
\]
TCR definition

• The weighted baseline is the cost without any filter

\[WAcc^b = \frac{\lambda \cdot N_L}{\lambda \cdot N_L + N_S} \quad WErr^b = \frac{N_S}{\lambda \cdot N_L + N_S} \]

• This leads to the Total Cost Ratio (TCR)

\[TCR = \frac{WErr^b}{WErr} = \frac{N_S}{\lambda \cdot N_{L\rightarrow S} + N_{S\rightarrow L}} \]
Results

Figure 1. TCR scores for $\lambda=1$
Results

Figure 2: TCR scores for $\lambda=9$

Figure 3: TCR scores for $\lambda=999$
More Results

Figure 1: ICR of 16-NN for $k = 1$ and three attribute-weighting functions.

Figure 2: ICR of 16-NN for $k = 999$ and three attribute-weighting functions.

Figure 3: ICR of 16-NN for $k = 1$ and different distance weighting functions (using d^2 for attribute weighting).

Figure 4: ICR of k-NN for $k = 1$ and different k values (using d^2 for attribute weighting and d for distance weighting).

Figure 5: ICR of k-NN for $k = 9$ and different k values (using d^2 for attribute weighting and d for distance weighting).
Other Examples

• Text recognition
• Image Scene Classification