Tracking Systems

• Track (locate) objects in space
 – 3 degrees of freedom for position
 – 3 degrees of freedom for orientation
 – 6 degrees of freedom for a rigid body
 – Most can track multiple objects

• Tracker types
 – Mechanical (early systems)
 – Optical (standard of care)
 – Electromagnetic (hot topic)
Early Mechanical Localizers: Mark I and Mark II Articulated Arms

Localizer Slides Courtesy of Robert Galloway, PhD, Vanderbilt University, Technology Guided Therapy Program

CAIMR Lab

Slide 3

Georgetown University
Pros and Cons of Articulated Arms

• Pros
 – Highly reliable
 – Highly accurate
 – Highly stable

• Cons
 – Cumbersome to use
 – Can easily interfere with surgical field
 – Cannot track multiple devices
Optical Localizers: Principle of Triangulation
Optical Localizer Classification

• Infrared-based (IR) tracking systems
 – Active optical systems
 • Optotrak Certus (Northern Digital Inc.)
 – Passive / active optical systems
 • Polaris Spectra and Vicra (Northern Digital Inc.)

• Videometric tracking systems
 – Micron Tracker (Claron Technology)

• Laser tracking systems
 – laserBird2 (Ascension Technology)
Infrared-based: Optotrak Certus

- Three-camera system
- Accuracy: very high
 - 0.15 mm maximum
- Field of view: large
 - Greater than 1 cubic meter
- Physical size: large
 - 1126 mm x 200 mm x 161 mm
- Tool tracking: active sensors

Specifications from: http://www.ndigital.com/research/certus.php

Figure courtesy of Northern Digital Inc.
Multiface Tool

- > 60 degree visibility
- Requires high speed location of sources.
Optical Tracking System and Display
Polaris Optical Localizer
Northern Digital Inc.

- Two 2-D sensors
- Operate with active or passive tools
- 60 Hz max
- USB interface

Working Volume (Field of View)

Polaris Spectra

Polaris Vicra

Figures courtesy of Northern Digital Inc.
Active Tools

- Infrared-emitting markers that are activated by an electrical current
- Tool geometries can be small since the same geometry can be used multiple times
- Markers can be cleaned easily
- Tool description file can be programmed into tool

Description from Northern Digital Inc.
Passive Tools

- Spherical, retro-reflective markers that reflect infrared light emitted by the illuminators on the position sensor
- Wireless
- Track numerous tools without reducing sample rate
- Need unique geometry for each tool – tools can be large
Choosing an Optical Tracking System
(courtesy Northern Digital)

- Size of measurement volume needed
- Update rate required for tracking
- Number of tools to be tracked
- Space restrictions and mounting location of system
- Integration/compatibility with current Polaris system
Setting Up Your Tracker (practical advice)

• Hardware
 – Need something to mount the tracker on
 • Tripod is a good solution
 • Buy a good one
 – Need some way to attach the tools to the object to be tracked
 • Can bolt directly or use clamp from Northern Digital

• Software
 – Trackers now come with a USB interface
 – They also have an application programming interface
 • More on this later
Another Optical System
Claron MicronTracker

- Use real-time stereoscopic vision to detect and track the pose of specially marked objects
- Objects are marked using small checkered target regions
- Firewire interface
 - Video: http://www.clarontech.com/measurement_demos.php

Claron Technology
Georgetown University
Electromagnetic versus Optical Tracking

• Tracking for image-guided surgery has been dominated by optical trackers
 – Advantages
 • Relatively large field of view
 • Highly accurate
 – Disadvantages
 • Require maintaining a line of sight
 • Therefore cannot track instruments inside the body

• Electromagnetic tracking
 – Does not require a line of sight
 – Therefore can track inside the body
Electromagnetic Tracking
Principle of Operation

Courtesy of Northern Digital Inc.
Footnote for Panel Discussion

• The term “electromagnetic” tracking has historically been used to describe systems that are based on magnetic fields.
• Some researchers may argue that these systems should be called “magnetic” spatial measurement systems since they do not depend on the electric field component of the electromagnetic wave.
• However, we will use the term electromagnetic here to reflect common usage and the fact that a varying magnetic field has an associated electric component.
Electromagnetic Tracker Characterization

- **AC driven systems**
 - FASTRAK (Polhemus Inc.)
 - Aurora (Northern Digital Inc.)

- **DC driven systems**
 - 3D Guidance (Ascension Technology)

- **Passive or transponder systems**
 - Calypso 4D system (Calypso Inc.)
Polhemus AC Driven Tracking

• From their website
 – Polhemus pioneered AC motion tracking
 – Unlike products based on pulsed DC technology, Polhemus trackers are not negatively affected by the earth’s magnetic field, power outlets or electric motors

• Not currently used in image-guided systems though since small tools are not available

Figure courtesy of Polhemus Inc.
Aurora

- Enables non-line of sight tracking
- Tracks up to 8 tools using miniature sensor coils
- Maximum rate of 40 Hz
- Measurement volume
 - 500 mm cubed
 - Starting 50 mm from field generator

Figures courtesy of Northern Digital
Electromagnetically Tracked Biopsy Needles

MagTrax Needle, Traxtal Inc

Courtesy of Northern Digital Inc.

CAIMR Lab

Slide 23

Georgetown University
Vertebroplasty

EM Navigation system

Aurora
3D Guidance (Ascension)

- Track up to eight miniaturized 6 DOF sensors or twenty-four 5 DOF sensors simultaneously
- Driven by quasistatic direct current (DC)
 - Can be more immune to eddy current distortions caused by common conductive metals, such as stainless steel (300 series), titanium, and aluminium

Figures courtesy of Ascension
“Metal Immune” Flat Transmitter

- Placed beneath a patient to negate any possible distortion of measurements by ferrous metal in an OR or procedural table
- ±20 cm X, Y, 10--46 cm Z coverage
- Radio-translucent and radio-opaque models available

Figures courtesy of Ascension
Calypso System for Prostate External Beam Radiation

- System components
 - 1) Beacon electromagnetic transponder (implanted in patient)
 - 2) 4D console (in room monitoring for setup)
 - 3) 4D electromagnetic array
 - 4) 4D tracking system (out of room monitoring)
 - 5) Optical system (for initial positioning)

Figures courtesy of Calypso Medical
IGSTK Open Source Software
(image-guided surgical toolkit: igstk.org)
How to Choose a Tracker

- Must be based on clinical application
- First, do you need to track inside the body?
 - Choice of electromagnetic versus optical
- Second, what is the tracking volume required?
- Third what are the tools required?
- Good topic for panel discussion
Acknowledgments

• Clinicians
 – Filip Banovac, MD
 – Vance Watson, MD
 – Elliot Levy, MD

• Scientists / Researchers
 – David Lindisch, RT
 – Patrick Cheng, MS
 – Ziv Yaniv, PhD
 – Emmanuel Wilson, MS
 – Seong K. Mun, PhD

• Collaborators
 – Brad Wood, MD, NIH Radiology