
1.7.2003

Christian Sandor, Otmar Hilliges
Lehrstuhl für Angewandte Softwaretechnik

Institut für Informatik
Technische Universität München

(sandor | hilliges)@in.tum.de

DWARF UI Tutorial

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

Contents
I. About this Tutorial
II. Introduction to DWARF UI Framework
III. The User Interface Controller
IV. The Viewer
V. Input Devices

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

I. Objectives
In this tutorial you are going to learn:
• How the DWARF UI framework is designed and

how it relates to DWARF itself.
• How the User Interface Controller (UIC) is used

for Multimodal Input Fusion and Dialog Control.
• How the 3D Viewer can be used to display AR

scenes.
• How input devices are integrated into the

framework.
• How advanced UIs can be built.

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

I. Overall Structure

Introduction to DWARF
 UI Framework

The User
Interface Controller The Viewer Input Devices

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

I. Structure of Chapters
The chapters 2-6 all follow the same schema:
• Objectives: What are you going to learn?
• Sources of Information:How to get more detailed

information?
• The Problem: What is the basic problem?
• Our Solution: How did we solve it?
• Implementation: How does the implementation look like?
• Future Work: What are the next steps planned?
• Discussion: Is it possible to solve this even better?
• Exercises: Run sample programs and do modifications

yourself.

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

I. Prerequisites
We recommend the following setup:
• SuSE Linux 8.1 with gcc 3.2
• KDE with konsole (very convenient)
• vi/emacs and bash shell
(more detailed requirements can be found at

http://www.augmentedreality.de)

Other setups have been tested as well:
• Windows with cygwin: works quite well. Was used

for parts of SHEEP.
• Mac OS X: works ok, but not fully tested

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

Contents
I. About this Tutorial
II. Introduction to DWARF UI Framework
III. The User Interface Controller
IV. The Viewer
V. Input Devices

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. Objectives
• What are the main problems implementing AR

UIs?
• How does DWARF fit into the picture?
• What are the conceptual parts of an AR UI?
• How did we implement these parts?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. Sources of Information
• General Information:

– www.augmentedreality.de: post your questions there!
• DWARF framework:

– ISMAR2001 paper
– ISWC2002 paper

• UI framework
– Rejected paper for Computer Graphics and

Applications: http://janus.informatik.tu-
muenchen.de/~sandor/cga03.pdf

– Upcoming publications :-)

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. The Problem - Requirements
Typical Requirements for AR UIs :
• Multimodal: Semantic unification of several input

channels. Also several presentation components
have to be coordinated.

• Rapid prototyping: To start the usability lifecycle
for finding and evaluating new UI metaphors.

• Spatial: Tracking data linked to objects in 3D
views.

• Flexible: I/O devices can be added/removed at
runtime.

• Distributed: Software components run on several
machines.

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. The Problem - Functional Decomposition

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. The Solution - Overview
• DWARF:

– Operating system for AR systems.
– Solves: Flexibility, distribution.

• UI Framework:
– Everything is built with DWARF components.
– Solves remaining requirements:

• Multimodality -> User Interface Controller component
• Spatial -> Viewer component
• Rapid Prototyping: Architecture recommendations for efficient

combination of above components.
• Flexibility revisited: Input device taxonomy.

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. Implementation - Architecture

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. Implementation - Component Summary
• User Interface Controller:

– Semantic fusion
– Dialog control

• Viewer:
– 3D presentation

• Input services:
– Deliver discrete input tokens to User Interface

Controller
– Continous tokens are most often passed directly to

Viewer (e.g. viewpoint of user coupled to viewpoint in
scene)

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. Future Work
• Models should influence the dialog control and

presentation (-> Knowledge-based AR, Feiner)
– Context
– User
– Task
– Hardware
– Discourse

• Simplify everything and build more systems

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

II. Discussion
• How does this architecture relate to

STUDIERSTUBE?
• Can parts of DWARF and STUDIERSTUBE be

used together?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

Contents
I. About this Tutorial
II. Introduction to DWARF UI Framework
III. The User Interface Controller
IV. The Viewer
V. Input Devices

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Objectives
• What are the requirements

that led to the UIC?
• How can Petri-Nets be

used to model
interactions?

• How does the UIC-API
look like?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Sources of Information
• Interaction chapter in: Herding Sheep - Live

Development of a Distributed Augmented Reality
System. ISMAR 2003

• Jfern Homepage:
http://sourceforge.net/projects/jfern

• Rejected paper for Computer Graphics and
Applications: http://janus.informatik.tu-
muenchen.de/~sandor/cga03.pdf

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. The Problem
• Several stateless input services emit tokens.
• User intention has to be extracted.
• Application and Presentation services have to be

controlled accordingly.
• State of UI should be stored centralized.
• During runtime intenal state of dialog control

should be visible (user, developer, usability
engineer)

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. The Solution
• User Interface Controller DWARF service

– Holds state of UI
– Controls I/O services
– Merges Discrete input tokens into user intention
– Displays internal state of dialog control and input fusion
– Rapid prototyping:

• Reuse of interaction patterns
• Surrogate for application logic
• Jam sessions

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Implementation 1/4
• Based on Petri-Net framework Jfern:

– XML with Java snippets for guards and actions.
– Generates class files
– Only a very small subset of Jfern is used.
– Input is modelled as tokens that are placed on places.
– Actions are triggered in transitions.

AND OR

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Implementation 2/4
• Object Design

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Implementation 3/4
• Code Snippets
1. Input service sets:
UserInputEvent.fixedHeader.event_type.name=“Speech“
2. Petri-Net XML:

<place id=“Speech"/>
<transition id="sendEventTransition">
 // assemble event to be sent
 UICEventSender d =
 (UICEventSender)UIC.getInstance("UIC").
 UICEventSenderHash.get("SceneData");
 d.sendEvent(event);
</transition>

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Implementation 4/4

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Future Work
• Current implementation already sufficient for

everything we want to do.
• Fancy features:

– Collect interaction patterns in library, e.g. Point-and-
speak

– Action templates („put-that-there“)
– Even higher-level description language

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Discussion
• How does the UIC relate to OpenTracker?
• How is multimodality solved in Studierstube?
• UIC as future OpenTracker node?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

III. Exercises
Connect TestStringSender, UIC and
TestStringReceiver to form a basic data flow
network:
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/DwarfUserInterfac
eTutorial#Lesson_1_Learn_to_use_the_Servic

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

Contents
I. About this Tutorial
II. Introduction to DWARF UI Framework
III. The User Interface Controller
IV. The Viewer
V. Input Devices
VI. Advanced Topics

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Objectives
• Get to know the Viewer‘s

capabilities
• Learn about the interaction

with UIC or Model service

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Sources of Information
• The code foundation: www.studierstube.org
• Otmar Hilliges‘ SEP documentation (upcoming)
• Wiki-site about ServiceViewer:

http://wwwbruegge.in.tum.de/projects/lehrstuhl/twi
ki/bin/view/DWARF/ServiceViewer

• Main 3D library: http://www.coin3d.org

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. The Problem
• Realtime 3D Rendering of VRML/IV scenes in

different modes:
– Video background
– Stereo: anaglyphic, line-inteleaved ...

• Connection of SceneGraph (=SG) objects to
trackers

• Control of SG objects:
– Addition/removal
– Change of properties

• Display of HUD-style information
• Synchronization with data storage for multi-view

applications

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. The Solution
• Very lightweight OpenInventor-based viewer for DWARF
• Interfaces to

– UIC:
• Addition/Removal of SG objects
• change of properties(not implemented, yet :-)
• Overlay SG for HUD information

– Model
• Same interface as UIC

– Trackers:
• PoseData is used to set transforms of SG objects

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Implementation 0/4

Video see-through Anaglyphic stereo

Line-interleaved stereoHUD-style overlay

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Implementation 1/4
• Layering

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Implementation 2/4
• UIC

– Controls one view
– Rapid prototyping

• Model
– Controls many views
– Persistency
– Consistency

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Implementation 3/4
• Typical Tasks:

1. Load initial scene
2. Add objects to scene
3. Add overlay (HUD-style)
4. Remove objects
5. Connect objects to trackers
6. Disconnect objects from trackers

• All tasks are realized with two DWARF events:
– SceneData: 1-4
– UserAction: 5-6

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Implementation 4/4
• SceneData • UserAction

module DWARF {
 //IV scene
 typedef string Scene;

 //Different Actions
 enum SceneAction {CreateObject,
 DeleteObject,ReplaceScene,SuperImpose};

 struct SceneData {
 SceneAction action;
 VirtualObjectId id;
 VirtualObjectId parent;
 Scene newScene;
 };
};

module DWARF {
 enum UserActionType
 //different Actions
 {SelectVirtualObject,
 DeselectVirtualObject};

 struct UserAction {
 UserActionType action;
 VirtualObjectId id;
 ThingID realObjectId;
 };
};

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Future Work
• Allow change of properties of SG objects
• Add more stereo modes
• Integration of 3D layout engine from Columbia CG

lab
• Knowledge-based AR: Adaption of views

according to:
– Context
– User
– Task
– Hardware
– Discourse

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Discussion
• Interoperability between DWARF and

Studierstube Viewer?
• Python binding would be interesting for us.
• 3D Layout engine could be interesting for you.

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

IV. Exercises
1. Output from TestStringSender

is displayed as overlay in
Viewer:
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twi
ki/bin/view/DWARF/DwarfUserInterfaceTutorial#Le
sson_2_Learn_to_use_the_Servic

2. Tangible sun for illuminating a
virtual scene:
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twi
ki/bin/view/DWARF/DwarfUserInterfaceTutorial#Le
sson_3_the_ServiceViewer_Viewe

3. Load a scene by a speech
command:
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twi
ki/bin/view/DWARF/DwarfUserInterfaceTutorial#Le
sson_4_the_ServiceViewer_Viewe

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

Contents
I. About this Tutorial
II. Introduction to DWARF UI Framework
III. The User Interface Controller
IV. The Viewer
V. Input Devices

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. Objectives
• What are the requirements

for AR input services?
• How did we solve them?
• How can DWARF‘s

Selector service be used
to solve ambigiuos
situations?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. Sources of Information
• Johannes Woehler‘s SEP documentation

Unit VRIB VRJuggler OpenTracker
Dynamic Configuration no yes yes no
Device Fusion yes no no yes
All kinds of Devices yes yes no no
Easy Device Misuse yes no no yes

•Unit: Alex Owal and Steven Feiner, Unit – A Modular Framework for Interaction
Technique Design, Development and Implementation,
http://www1.cs.columbia.edu/~aolwal/abstract.htm
•VRIB: Virtual Reality Interaction Toolbox, www.vrib.de
•VRJuggler: C. Just et al., VRJuggler: A Framework for Virtual Reality
Development, www.vrjuggler.org
•OpenTracker: Studierstube, An Open Architecture for Reconfigurable Tracking
based on XML, http://www.studierstube.org/opentracker/

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. The Problem 1/2
• Input devices for AR are often customly-built.

Difficult to develop a generic protocol supporting
all of them.

• Highly dynamical environments require exchange
of input devices at runtime.

• Which input channel is mapped to which DWARF
ability?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. The Problem 2/2

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. The Solution 1/2
• Dynamics for exchange of input devices: DWARF
• Matching of input services and UIC: DWARF‘s

Needs and Abilities
• Two steps in setting up connection UIC-input

services:
– Syntactical matching: strictly according to token formats
– Semantical matching: which token covers which

functionality?

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. The Solution 2/2
• UserInput can be

decomposed into four
token types

• Different syntactical
matching possibilities:
– Equality
– Subset
– Intersection

• Semantic matching: For
ambiguities user has to
give decisive input:
Selector service

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. Implementation 1/2
DWARF realization:
• CORBA IDLs for syntax hierarchy leaf nodes

 InputDataEventType = {InputDataState | InputDataChange}

InputDataBool
eventType: InputDataEventType
boolValue: boolean

InputDataString
eventType: InputDataEventType
stringValue: string

InputDataAnalogLimited.idl
eventType: InputDataEventType
limitedAnalogValue: double

InputDataAnalogUnlimited.idl
eventType: InputDataEventType
analogValue: double

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. Implementation 2/2

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. Future Work
• Refine taxonomy to support advanced input

paradigms (drag‘n drop)
• Work on a more usable selection of input devices

1.7.2003DWARF UI Tutorial
Christian Sandor, Otmar Hilliges

V. Discussion
• Interoperability between DWARF and

Studierstube input tokens?

