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Deep-Learning Generated Synthetic Double Inversion Recovery 1 

Images Improve Multiple Sclerosis Lesion Detection  2 

 3 

Abstract  4 

 5 

Objectives: To implement a Deep-Learning tool to produce synthetic double-inversion 6 

recovery (synthDIR) images and compare their diagnostic performance to conventional 7 

sequences in patients with multiple sclerosis (MS). 8 

 9 

Materials and Methods: For this retrospective analysis, 100 MS patients [65 female, 37 (22-10 

68) years] were randomly selected from a prospective observational cohort between 2014 11 

and 2016. In a subset of 50 patients, an artificial neural network (DiamondGAN) was trained 12 

to generate a synthetic DIR (synthDIR) from standard acquisitions (T1, T2 and FLAIR). With 13 

the resulting network, synthDIR was generated for the remaining 50 subjects. These images 14 

as well as conventionally acquired DIR (trueDIR) and FLAIR images were assessed for MS 15 

lesions by two independent readers, blinded to the source of the DIR image. Lesion counts in 16 

the different modalities were compared using a Wilcoxon signed-rank test and inter-rater 17 

analysis was performed. Contrast-to-noise ratios (CNR) were compared for objective image 18 

quality.  19 

 20 

Results: Utilization of synthDIR allowed to detect significantly more lesions compared to the 21 

use of FLAIR images (31.4 ± 20.7 vs. 22.8 ± 12.7, p<0.001). This improvement was mainly 22 

attributable to an improved depiction of juxtacortical lesions (12.3 ± 10.8 vs. 7.2 ± 5.6, 23 



 

 2 

p<0.001). Inter-rater reliability was excellent in FLAIR 0.92 (95% CI 0.85; 0.95), synthDIR 0.93 1 

(95% CI 0.87; 0.96) and trueDIR 0.95 (95% CI 0.85; 0.98). 2 

CNR in synthDIR exceeded that of FLAIR (22.0 ± 6.4 vs. 16.7 ± 3.6, p=0.009), no significant 3 

difference was seen in comparison to trueDIR (22.0 ± 6.4 vs. 22.4 ± 7.9, p=0.87). 4 

 5 

Conclusion:  Computationally generated DIR images improve lesion depiction compared to 6 

the use of standard modalities. This method demonstrates how artificial intelligence can 7 

help improving imaging in specific pathologies. 8 

 9 
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Abbreviations 1 

MS: Multiple Sclerosis 2 

FLAIR: Fluid-Attenuated Inversion Recovery 3 

DIR: Double Inversion Recovery 4 

GAN: Generative Adversarial Network 5 

trueDIR: physically acquired DIR 6 

synthDIR: synthetically generated DIR 7 

CNR: Contrast-to-Noise ratio 8 

NAWM: Normal Appearing White Matter 9 

ICC: Intraclass Correlation Coefficient 10 

EDSS: Expanded Disability Status Scale 11 

RRMS: Relapsing-Remitting Multiple Sclerosis 12 

AI: Artificial Intelligence 13 
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Introduction 1 

 2 

Multiple sclerosis (MS) is the most common non-traumatic cause of disability in young adults 3 

with accelerating rates of new diagnoses over the past decades (1). Recently, data has 4 

accumulated demonstrating neuronal loss and early-onset atrophic brain changes in patients 5 

suffering from MS (2, 3). As the regenerative potential of brain tissue is per-se limited and 6 

decreases with age, it is important to attenuate disease activity as early as possible in order 7 

to avoid non-repairable damage. Both, delayed initial diagnosis as well as an undetected 8 

progression under treatment can negatively impact the prognosis of patients (4, 5). MRI has 9 

proven to be a valuable tool in detecting and evaluating progression of MS-related brain 10 

lesions and is tightly integrated into current guidelines (6). While fluid-attenuated inversion 11 

recovery (FLAIR) is arguably the most widespread sequence used to assess brain lesions, 12 

technical advances have led to the development of double inversion-recovery (DIR) 13 

acquisition with a higher sensitivity for lesion detection than conventional or fluid-14 

attenuated T2-weighted acquisitions (7). As it has recently become clear that (juxta)cortical 15 

plaques play an important role in MS and appear in early stages of the disease, the particular 16 

strength of DIR to detect these kinds of lesions is becoming more and more relevant from a 17 

clinical point of view (8-11). Beyond the better conspicuity of (juxta)cortical lesions, DIR 18 

facilitates automated detection of lesions compared to standard sequences and thus seems 19 

better suited for segmentation tasks (12, 13). However, the time-consuming acquisition of 20 

DIR has hindered the widespread implementation of this technique in daily routine. In view 21 

of this limitation, synthesizing DIR from routinely acquired MR sequences with the aid of 22 

deep-learning tools, such as recently proposed generative adversarial networks (GAN) seems 23 

promising (14). Reliable image synthesis with the here-proposed DiamondGAN (generative 24 
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adversarial network with a diamond-shaped topology) has already been validated from a 1 

technical perspective (15).  2 

An important aspect of DiamondGAN is its ability to augment image information via multi-to-3 

one mapping, i.e. to use several input sequences (in this case T1, T2 and FLAIR) to generate 4 

one output modality (in this case DIR). This enables DiamondGAN to learn synergistic 5 

combinations of image information from multiple input sequences and thus improves the 6 

output. In a prior work describing the technical background of DiamondGAN, we have shown 7 

DIR images of healthy controls, either acquired or synthesized, to 14 neuroradiologists and 8 

asked for their visual evaluation of both modalities (15). Blinded to the origin of these 9 

images, they were unable to differentiate if the shown modality was acquired (trueDIR) or 10 

synthetic (synthDIR). 11 

Whether GANs only create realistic looking images or whether these images indeed carry a 12 

surplus of clinically relevant information is however yet to be shown. We therefore 13 

investigated the hypothesis that synthDIR augments background image information from 14 

FLAIR, T1 and T2 and thus improves lesion depiction in MS patients.  15 

 16 
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Materials and Methods 1 

 2 

Scan Acquisition 3 

 4 

This study design was approved by the local institutional review board and informed consent 5 

was obtained from all patients. MR datasets from 100 randomly selected patients with 6 

diagnosed MS were retrospectively collected from a prospectively collected observation 7 

cohort from 08.2014 to 03.2016 and included T1- (2:25 minutes acquisition time), T2- (3:17 8 

minutes acquisition time), FLAIR (3:55 minutes acquisition time) and DIR (6:31 minutes 9 

acquisition time) sequences. Scans were performed on a 3T scanner (Philips Achieva 3.0T, 10 

Philips Healthcare, Eindhoven, Netherlands). Identical parameters in all patients were 11 

chosen for T1 (repetition time= 9ms, echo time= 4.0ms, flip angle= 8°, acquired in the 12 

sagittal plane with isotropic voxel size of 1mm3), T2 (repetition time= 4000ms, echo time= 13 

35.0ms, flip angle= 90°, acquired in the sagittal plane with isotropic voxel size of 1mm3), 14 

FLAIR (repetition time= 10000ms, echo time= 140.0ms, inversion time= 2750ms, flip angle= 15 

90°, acquired in the sagittal plane with isotropic voxel size of 1mm3) and DIR (repetition 16 

time= 5500ms, echo time= 321.6ms, inversion time= 2550ms and 2990ms, flip angle= 90°, 17 

acquired in the sagittal plane with isotropic voxel size of 1mm3). 18 

 19 

 20 

DIR synthesis with GAN 21 

 22 

The basic principle of DiamondGAN is to synthesize a target MRI modality T given a set of 𝑛 23 

input modalities 𝑋 = {𝑥𝑖|𝑖 = 1,… , 𝑛}. The goal of the synthesis task is to learn a modality 24 
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generator G such that: 𝐺(𝑋) = 𝑇. The DiamondGAN pipeline contains two networks: a 1 

generator G and a discriminator D, built on conventional GAN techniques (16). G contains two 2 

generators 𝐺1
 and 𝐺2

 which simultaneously learn the mappings from 𝑋 → 𝑇 and 𝑇 → 𝑋 3 

respectively. D consists of two discriminators  𝐷1
 and 𝐷2

. 𝐷1
 discriminates the real images 4 

from source domain and synthetic images from 𝐺1
 while 𝐷2

 discriminates the real images from 5 

target domain and synthetic images from  𝐺2
 . In this adversarial learning process, the four 6 

networks are simultaneously optimized to generate high-quality images. G and D are variants 7 

of convolutional neural networks and optimized with multiple loss functions in an end-to-end 8 

fashion, as explained before (15). One helpful property of publicly-available DiamondGAN 9 

(https://github.com/hongweilibran/DiamondGAN/) is that it does not require the input and 10 

output to be strictly spatially aligned, by mapping the inputs to latent spaces and optimizing 11 

the generator networks by a cycle-consistency loss function as explained in (15). Conventional 12 

regression approaches require the input and output to be strictly spatially aligned. However, 13 

in practice, registration methods cannot guarantee such pixel-to-pixel alignment properly 14 

between the input and output image spaces (17). A schematic overview illustrating the 15 

architecture of DiamondGAN is given in figure 1.  16 

 17 

We hypothesize that a large portion of information in an individual MR sequence is also 18 

contained (albeit possibly hidden) in other sequences and that DIR can be reconstructed given 19 

the combination of FLAIR, T1 and T2. The 3D volumes of these sequences are parsed into 2D 20 

axial slices. The concatenation of FLAIR, T1 and T2 axial slices is fed to train the network while 21 

synthDIR slices are the output. Technically, the network does not necessarily require 3D 22 

acquisitions for the sequences, but the acquisition should be consistent (either 2D or 3D) 23 

among the input modalities. Fifty MS patients with complete sequences are used to train the 24 
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model. The generator model contains 7,218,987 parameters and is trained for 12 hours with 1 

a high-end graphic card (NVIDIA Titan V, Santa Clara, USA). In the inference stage, we take 2 

FLAIR, T1 and T2 slices as the input and synthesize the DIR slices. Then the DIR slices are 3 

normalized by histogram matching and spatially concatenated into 3D volumes. Since the axial 4 

slices on top or bottom do not contain brain structures, we synthesize the middle slices with 5 

brain structure after empirically setting a starting and ending threshold. Exemplary sets of 6 

FLAIR, synthDIR and trueDIR with their respective lesion segmentations are given in figure 2.   7 

 8 

 9 

Expert readings 10 

 11 

In accordance with the current imaging criteria to diagnose MS, we did not distinguish 12 

between juxtacortical and cortical lesions (18). For simplicity, we will therefore refer to both 13 

types of lesions as juxtacortical lesions. 14 

All 150 data sets (50 test patients with FLAIR, trueDIR and synthDIR) were visually assessed 15 

by two neuroradiologists (both with 3 years of experience) for the number of juxtacortical, 16 

periventricular, infratentorial  and subcortical white matter lesions, having a minimum 17 

diameter of 3mm in any direction. Manual lesion count was done independently using an 18 

open-source 3D image analysis tool (19) and the order of investigated modalities was 19 

randomly altered to prevent a learning effect. The readers were blinded for the nature of 20 

DIR modalities (trueDIR or synthDIR) and had no clinical background information on patients 21 

except for the fact that prior diagnosis of MS had been made. Each lesion in synthDIR was 22 

retrospectively validated in trueDIR by one rater to exclude that false-positive lesions had 23 

been generated during the synthetization process. 24 



 

 9 

Lesion contrast 1 

 2 

To assess image quality of the modalities, we calculated the contrast-to-noise ratio (CNR) for 3 

a randomly selected subset of 15 patients: in each patient, 1 or 2 representative lesions 4 

were manually segmented on the T2 image (to avoid bias) and equally sized regions of 5 

interest were placed in the contralateral normal-appearing white matter (NAWM) using 6 

open-source 3D image analysis tool (19). From the coregistered modalities, CNR was 7 

calculated for FLAIR, synthDIR and trueDIR as:  8 

 9 

CNR =  
𝑀𝑒𝑎𝑛𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑒𝑠𝑖𝑜𝑛𝑠−𝑀𝑒𝑎𝑛𝑆𝑖𝑔𝑛𝑎𝑙𝑁𝐴𝑊𝑀

𝑆𝐷𝑁𝐴𝑊𝑀

 10 

 11 

 12 

Statistical analysis 13 

 14 

Same counts of lesions in FLAIR (that was used as input modality) and synthDIR was defined 15 

as null hypothesis. The normality of distribution was violated as tested by the D'Agostino-16 

Pearson test. Lesion counts from the three investigated modalities were compared with a 17 

Wilcoxon signed-rank test, CNR between the investigated modalities was compared with a 18 

paired Student's t-test.  19 

Inter-rater reliability was assessed with the intraclass correlation coefficient (ICC) (use of 20 

single measurements for absolute agreement in a two-way random model).   21 

Statistical computations were performed with software (SPSS Statistics for Windows, version 22 

25.0; IBM, Armonk, NY). P < 0.05 was considered statistically significant.  23 
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Results 1 

 2 

Patient characteristics for the training and test set are given in table 1. No significant 3 

differences in clinical parameters were observed.  4 

Inter-rater reliability was excellent with intraclass correlation coefficients (ICC) between both 5 

raters ranging from 0.92 (95% CI: 0.85; 0.95) for FLAIR to comparable levels of 0.93 (95% CI: 6 

0.87; 0.96) and 0.95 (95% CI: 0.85; 0.98) for synthDIR and trueDIR, respectively. ICCs 7 

between both readers as a function of lesion localization are given in table 2. 8 

 9 

Quantitative assessment of image contrast (lesion vs. NAWM) in a subset of 15 randomly 10 

selected patients revealed a significantly better CNR for synthDIR compared to FLAIR (22.0 ± 11 

6.4 vs. 16.7 ± 3.6, p=0.009), matching the CNR of trueDIR (22.0 ± 6.4 vs. 22.4 ± 7.9, p=0.87) 12 

(figure 3). 13 

 14 

The mean count of MS-specific lesions (juxtacortical + periventricular + infratentorial) per 15 

patient was significantly higher in synthDIR than FLAIR (31.4 ± 20.7 vs. 22.8 ± 12.7, p<0.001) 16 

(location-dependent lesion counts for both readers are given in table 3, counts of MS-17 

specific lesions are further shown in figure 4). Worth mentioning is the fact that the 18 

improved performance of synthDIR compared to FLAIR could be primarily attributed to 19 

better detection of juxtacortical lesions (12.3 ± 10.8 vs. 7.2 ± 5.6, p<0.001). Both 20 

observations held true when analysing lesion counts from the second reader (table 3).  21 

Consequently, a shift in the proportion of juxtacortical and subcortical lesions was noted as 22 

the relative share of juxtacortical lesions from the total count increased from 16.9% in FLAIR 23 
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to 23.3% in synthDIR (p<0.001) while the share of subcortical lesions decreased analogously 1 

from 41.2% in FLAIR to 37.3% in synthDIR (p<0.001). 2 

Although a location-dependent heterogeneity could be noted, a tendency for improved 3 

lesion detection in synthDIR compared to FLAIR held true irrespective if lesions were 4 

juxtacortical, periventricular, subcortical or infratentorial (counts for both readers are given 5 

in table 3). Physically acquired trueDIR trumped both, FLAIR (36.1 ± 24.3 vs. 22.8 ± 12.7, 6 

p<0.001) and synthDIR (36.1 ± 24.3 vs. 31.4 ± 20.7, p<0.001) in depicting MS-specific lesions. 7 

Retrospective visual cross-validation showed that there were no lesions in synthDIR that 8 

could not be detected in trueDIR, hence the possibility of artificial lesion generation by the 9 

GAN could be excluded.  10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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 20 
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 22 

 23 
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Discussion 1 

 2 

We hypothesized that training a GAN with sequences routinely acquired in MS imaging 3 

allows to create synthetic, high lesion-to-background contrast DIR images. These generated 4 

images enabled the readers to find significantly more lesions compared to the standard 5 

sequence FLAIR. 6 

Further supporting the ability of DiamondGAN to synergistically combine input image 7 

information to create its output is the fact that the increase in lesions found in the synthetic 8 

DIR compared to FLAIR was mostly driven by juxtacortical lesions. The DIR acquisition is best 9 

known for its ability to detect this type of lesion, as it has become increasingly clear that 10 

juxtacortical lesions play an important role for diagnosis and prognosis of MS patients (20-11 

22). By combining information from FLAIR, T1 and T2 images, DiamondGAN is able to 12 

replicate this strength of DIR images with potentially profound ramifications as initial 13 

diagnosis of MS strongly relies on the robust differentiation between MS-specific (i.e. 14 

juxtacortical) non-MS-specific (i.e. subcortical) lesions .  15 

 16 

Beyond the methodological innovation of using complimentary aspects of different 17 

acquisitions (T1, T2, FLAIR) to generate output (synthDIR), such pronounced differences in 18 

lesion detection can have clinical implications for the monitoring of a disease that is tightly 19 

linked to the dynamics of inflammatory lesions. Recent studies have highlighted the 20 

potential of DIR in monitoring MS progression and stress the urgency to use this acquisition 21 

more broadly and prospectively wean our dependency on gadolinium scans (22). In light of 22 

the time-consuming physical acquisition of DIR, artificial intelligence (AI) could be the key to 23 

facilitate its wider implementation in MS imaging. Even as the physically acquired DIR still 24 
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outperformed the synthetic DIR it needs to be said that the information content in synthDIR 1 

was nevertheless superior to that of input FLAIR and can potentially be improved with future 2 

improvements of GAN training and input combinations.. 3 

Beyond the subjective lesion analysis, quantification of CNR confirms the data augmentation 4 

taking place within DiamondGAN, a publicly available AI-tool, and provides proof for the 5 

similitude between synthDIR and trueDIR in depicting white-matter lesions.  6 

While ongoing scientific advances, be it the improvement of image resolution, use of 7 

experimental methods such as MR-fingerprinting or inclusion of spectroscopy findings, pave 8 

the way for improving diagnostics in MS, the utilization of AI in chronic-inflammatory brain 9 

disease has in the vast majority of cases been restricted to quantitative analyses such as 10 

lesion segmentation (23-26). The here-presented study provides a different approach as it 11 

does not focus on interpreting available images but explores the prospect of augmenting 12 

intrinsic, yet not necessarily visual information within an MR dataset. Similar approaches 13 

may further open the door for data homogenization through synthetization of a 14 

''standardized'' MR dataset from heterogenous input data or generation of artificial imaging 15 

sets to feed Deep Learning algorithms.  16 

A further advantage of GANs is their applicability to existing data. This is in contrast to 17 

technical developments such as new sequences or hardware, which can only be applied 18 

prospectively and offers a unique chance to retrospectively validate findings that might 19 

become apparent after implementation of a more sensitive imaging protocol (27). 20 

One general limitation of this study is the relatively small sample size of only 100 patients. 21 

Further, the single-centre setting with all scans originating from one MR scanner, rendering 22 

statements about the generalizability of our findings impossible. Using GANs for data 23 

homogenization by synthesizing a standardized input dataset irrespective of the source data 24 



 

 14 

is however one potential remedy worth exploring.  Additionally, the input acquisitions used 1 

in our study (T1, T2 and FLAIR) all depict MS lesions, thus a large portion of information from 2 

the individual acquisition is redundant. Therefore, it remains to be studied whether 3 

satisfying synthetic images can be derived already from a subset of these acquisitions. 4 

Moreover, the value of alternative input acquisitions than the ones used in the present study 5 

has yet to be investigated. 6 

 7 

In summary, we have demonstrated the ability of artificial neural networks to create high 8 

contrast images from standard input, thereby significantly improving lesion detection in MS 9 

patients. Future studies investigating generalizability and optimal sequence combinations for 10 

image synthesis seem warranted.  11 
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 3 

Tables  4 

 5 

 Training set Testing set  p 

n 50 50 1 

Age 38.5 ± 9.2 36.4  11.0 0.30 

Sex 18 (36) 17 (34) 0.84 

% RRMS 45 (90%) 46 (92%) 0.73 

Disease duration 5.7 ± 4.6 5.8 ± 4.0 0.91 

EDSS 1.5 (1.0; 2.5) 1.5 (0; 2.0) 0.61 

Table 1. Patient characteristics. Given are key clinical parameters for the training and testing 6 
set of the included 100 patients. RRMS: relapsing-remitting multiple sclerosis. EDSS: 7 
Expanded Disability Status Scale 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
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 Periventricular Juxtacortical 

FLAIR synthDIR trueDIR FLAIR synthDIR trueDIR 

R1 counts 13.6 ± 9.35 16.7 ± 12.8 18.8 ± 14.3 7.2 ± 5.55 12.3 ± 10.8 14.7 ± 13.1 

R2 counts 10.7 ± 8.36 13.0 ± 12.7 17.8 ± 15.1 3.7 ± 3.45 7.4 ± 9.6 11.1 ± 13.1 

ICC 0.93 (0.88; 0.96) 0.95 (0.91; 0.97) 0.96 (0.93; 0.98) 0.82 (0.68; 0.90) 0.90 (0.82; 0.94) 0.95 (0.91; 0.97) 

 

 Infratentorial Subcortical 

FLAIR synthDIR trueDIR FLAIR synthDIR trueDIR 

R1 counts 2.0 ± 1.68 2.4 ± 2.2 2.6 ± 2.2 12.1 ± 10.2 15.1 ± 10.8 15.8 ± 11.7 

R2 counts 0.9 ± 1.26 1.3 ± 2.2 1.4 ± 1.6 14.6 ± 11.3 16.5 ± 12.2 18.8 ± 13.2 

ICC 0.48 (0.07; 0.70) 0.87 (0.78; 0.93) 0.81 (0.66; 0.89) 0.92 (0.87; 0.96) 0.89 (0.81; 0.94) 0.91 (0.83; 0.95) 

Table 2 Lesion count (mean ± standard deviation) as well as intraclass correlation coefficients (ICC with 95% CI) for both readers  
and all acquistions/locations. R = reader. 
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 MS-specific 
lesions (PV+JC+IT) 

p Periventicular 
lesions 

p Juxtacortical 
lesions 

p Infratentorial 
lesions 

p Subcortical 
lesions 

p 

Reader 1 

FLAIR vs. 

synthDIR 

22.8 ± 12.7 
<0.001* 

13.6 ± 9.35 
<0.001* 

7.2 ± 5.55 
<0.001* 

2.0 ± 1.68 
0.017* 

12.1 ± 10.2 
<0.001* 31.4 ± 20.7 16.7 ± 12.8 12.3 ± 10.8 2.4 ± 2.2 15.1 ± 10.8 

FLAIR vs.  

trueDIR 

22.8 ± 12.7 
<0.001* 

13.6 ± 9.35 
<0.001* 

7.2 ± 5.55 
<0.001* 

2.0 ± 1.68 
<0.001* 

12.1 ± 10.2 
<0.001* 

36.1 ± 24.3 18.8 ± 14.3 14.7 ± 13.1 2.6 ± 2.2 15.8 ± 11.7 

synthDIR vs.  

trueDIR 

31.4 ± 20.7 
<0.001* 

16.7 ± 12.8 
0.002* 

12.3 ± 10.8 
0.004* 

2.4 ± 2.2 
0.14 

15.1 ± 10.8 
0.10 36.1 ± 24.3 18.8 ± 14.3 14.7 ± 13.1 2.6 ± 2.2 15.8 ± 11.7 

Reader 2 

FLAIR vs.  

synthDIR 

15.3 ± 10.4 
0.026* 

 

10.7 ± 8.36 
0.29 

3.7 ± 3.45 
0.0011* 

0.86 ± 1.26 
0.13 

14.6 ± 11.3 
0.074 21.7 ± 20.8 13.0 ± 12.7 7.4 ± 9.6 1.3 ± 2.2 16.5 ± 12.2 

FLAIR vs.  

trueDIR 

15.3 ± 10.4 
<0.001* 

10.7 ± 8.36 
<0.001* 

3.7 ± 3.45 
<0.001* 

0.86 ± 1.26 
0.0027* 

14.6 ± 11.3 
<0.001* 30.3 ± 23.8 17.8 ± 15.1 11.1 ± 13.1 1.4 ± 1.6 18.8 ± 13.2 

synthDIR vs.  

trueDIR 

21.7 ± 20.8 
<0.001* 

13.0 ± 12.7 
<0.001* 

7.4 ± 9.6 
<0.001* 

1.3 ± 2.2 
0.31 

16.5 ± 12.2 
0.0018* 30.3 ± 23.8 17.8 ± 15.1 11.1 ± 13.1 1.4 ± 1.6 18.8 ± 13.2 

 
Table 3. Location-dependent lesion count differences, discerned for periventricular, juxtacortical, infratentorial and subcortical lesions, as well as a 
composite of all MS-specific lesions (juxtacortical + periventricular + infratentorial). Significant results are highlighted with *. PV=periventricular; 
JC=juxtacortical; IT=infratentorial. Counts are given for readers 1 and 2. 
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Figures 
 

 
 
Figure 1: A schematic view of the proposed image synthesis system using generative 
adversarial networks, including two image generators and two image discriminators. The 
four networks are simultaneously optimized to generate high-quality images. 
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Figure 2. Exemplary images of FLAIR, synthDIR and trueDIR from the same patient. Given are 
sets of slices in the sagittal and axial plane with their respective lesion segmentations. 
Notable is the improved ability to detect juxtacortical lesions (green arrows) in synthDIR 
compared to (input) FLAIR.  
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Figure 3. Contrast-to-noise ratios for FLAIR, synthDIR and trueDIR. 
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Figure 4. Mean counts of specific lesions (± standard error of the mean) for FLAIR, synthDIR 
and trueDIR. Counts are given for both readers. Significant differences are highlighted with 
*. 
 
 


