
System Development Project

Development of a Dynamic Visualization using
Java2D

Anton Kostov

Aufgabensteller: Univ.-Prof. Dr. Dr. h.c. Manfred Broy

 Betreuer: Dipl.-Inf. (Univ.) Sebastian Winter

Abgabedatum: 22. November 2005

Page 1

Abstract:

The project goal was to develop a dynamical visualization of the great amount of information
that a todays auto produces. The format and the presentation of this information are very
important and one of the most used tools that help the driver is the Comboview which is
usually placed in front of him and displays speed, rpm, oil consumption etc. To improve the
interaction between the driver and the car such a tool was developed and integrated into the
car-simulator developed from the Department for Ergonomics's (DfE) at the TUM.
Different Comboview templates can be created easily using some graphical editor that have
support for the SVG format like Illustrator and thus allowing us to build quickly different user
interfaces and explore which is better suited. The project goals were to create such
templates, build a viewer that can load them and dynamically update the displayed
information and also to deploy it as a service into the car-simulator. The viewer can be used
either standalone or as a part of the DWARF system and is based on Batik SVG project.

Page 2

Table of Contents
System Development Project... 1
1 Introduction... 5

1.1 Motivation... 5
1.2 Goals of this work... 5
1.3 Dwarf Overview.. 6
1.4 SVG Overview.. 6
1.5 Batik Overview..7
1.6 Structure of the document... 9

2 Requirements for the dynamic visualization...10
2.1 Usage Scenarios...10
2.2 Functional Requirements...11
2.3 Non Functional Requirements...11
2.4 Pseudo Requirements.. 11

3 Design and Implementation ... 13
3.1 Design Goals... 13
3.1 Class Design.. 13
3.2 Use Cases.. 19

4 Comboview Demo.. 21
4.1 The demo setup... 21
4.2 The Standalone Application.. 21

4.2.1 Windows..21
4.2.2 Linux..23

4.3 The Comboview Service... 25
5 How-to...27

5.1 Create & Deploy Dwarf Extensions.. 27
5.2 Create SVG Templates with Adobe Illustrator..27

5.2.1 How-to create templates.. 27
5.2.2 Tools For Viewing SVG ...32
5.2.3 Tools For Creating SVG ...33
5.2.4 Exporting to SVG.. 33

6 Future Work.. 35
7 Conclusion.. 36
8 Appendix...37

A : Javadoc.. 37
A... 37
B..37
C..37
D... 38
E..39
F.. 39
G... 39
H... 40
I... 40
L..40
M...41

Page 3

N... 41
O... 41
P.. 41
R..42
S.. 42
T..43
U... 43
V... 44

B: Glossary.. 44
9 Bibliography..46

Page 4

1 Introduction

1.1 Motivation
Modern automobiles contain a wide variety of interactive accessories. Although these
accessories are designed to enhance the driving experience, they can sometimes draw
attention away from the real job behind the wheel, piloting the vehicle. While elaborate stereo
systems, climate controls, and even cellular telephones can be used safely during most
driving situations, in demanding situations these accessories can possibly become an
untimely distraction. However, drivers have grown up with these accessories over time and
are accustomed to using the systems found in automobiles today. They have also found a
responsible way to manage these systems on their own, and in most situations, they do a
good job.
But driver inattention is the most prevalent primary cause of collisions, accounting for an
estimated 25-56% . To be able to assist drivers, we need to be able to collect real-time data
on driver visual behavior, recognize what the driver is doing (contextual information such as
maneuvers, actions, and states), predict what the driver would likely do next, and assist the
driver (design an interface). The importance of context is underlined. This system design
project tries to help in one of the most important problems in the design of a usable interface
and for the dynamic interaction with the driver. This interface can be changed dynamically
according the current context in which the driver is situated if we have some sort of driver
disattention like talking to other person or not looking at the road thus missing a speed shield
we have to update the current interface and to notify the driver and thus to improve the
interaction between the machine and the person.
The TUMMIC project (Thoroughly User-centered Man-Machine-Interaction in Cars) is
investigating lots of this issues and has build a car-simulator to be able to better explore
them. Other important subjects that usually appear when we are talking about improving HMI
in the cars are:

• Rapid Prototyping: developing new display-interaction-concepts for undeveloped
technologies requires easy configurable solutions for evaluation

• Concept Evaluation: testing concept for acceptance and support for the driving task
requires massive logging of time and task relevant data

• Technology: current Head-Up display technology is not capable of stereoscopic
rendering. New hardware has to be developed and calibrated

• Spatial Context: spatial movement in vehicles requires knowledge about other
vehicles and obstacles in the drivers environment

• Easier Navigations: alternative methods for input like entering text or using
touchscreen front panel to navigate quickly over the tasks that require immediately
driver attention.

1.2 Goals of this work
This SEP is inspired to solve some of this common problems and to allow quickly prototyping
of new user interfaces, dynamically updating the information on the display according the

Page 5

current context, to allow easily handling alternative methods for navigation like entering text
or using touchscreen displays.
During the development a Comboview control one of the most important tools that assist the
driver was developed and integrated into the car-simulator and various templates for this
panel were developed and tested. Also a concept was created for the easier developing of
such rich view components and was successfully implemented. The principle actually is quite
simple you create the desired user interface with your favorite graphics editor that support the
SVG file format This can be done actually by anyone you do not have to be a graphics
designer or 2D artist or have university diploma. Then group the elements according to the
desired behavior that they have like speedometer, left or right knob or auto-pilot button, after
that set unique Ids for every such element using any XML editor and write a simple wrapper
using Java or Javascript that changes dynamically the desired values of the components.

1.3 Dwarf Overview
The car-simulator is built on the top of DWARF so the following section gives a brief overview
of the aspects relevant to creating the Comboview Service but before I can go on explaining
the service, it is necessary to understand the basic concepts. For further reading, an in-depth
discussion of DWARF can be found in [1, 7, 14].
A DWARF system consists of several cooperating services, located on different stationary or
mobile computers. Each service has a set of needs and abilities, which describe how the
service can communicate with other services. The most important property of a need or
ability is the protocol that is used for communication. In addition, an arbitrary number of
attributes can be defined which give more detailed information about what kind of data an
ability provides or a need expects. To limit the selection of communication partners,
predicates can be given, which the other service has to fulfill. When the supported
communication protocols of a need and an ability match and all predicates are satisfied, the
DWARF middleware dynamically connects the two services.
DWARF is designed for distributed applications, so this works across the network, but
preference is given to local services. When new services are added to the system or existing
ones are removed from it, the middleware reacts to these changes and adds or removes
connections between services.The part of the DWARF middleware which is responsible for
locating and connecting services is called the service manager. Usually one instance is
running on each computer, acting on behalf of the local services and advertising them on the
network.

1.4 SVG Overview
The following section describes what SVG is and why it is very convenient to use it as for rich
2D templates. SVG stands for SVG = Scalable Vector Graphics and is an XML format for
rich, interactive 2D graphics and is developed as a W3C activity that is supported by
companies like Sun Microsystems, Adobe, Kodak, Nokia and many others. More and more
major suppliers of graphic tools (e.g. Adobe Illustrator, Corel Draw, Together) make export to
SVG possible. The last specification is SVG 1.1 from 4 January 2003 more info can be found
at http://www.w3.org/TR/SVG/. The goal that SVG aims to follow is to be a rich interoperable
graphics format for a wide range of applications and platforms there exists profiles for the
desktop (SVG Full) and mobiles (SVG Tiny and SVG Basic).

Page 6

SVG Key Features are:
• Basic and complex shapes
• Rich paint styles (gradients, patterns)
• Rich text
• Searchable and zoomable
• Opacity
• Filter effects
• Scripting and Animation for dynamic content
• Internationalization (i18n)

SVG is important because enhances the end-user's experience, reduces graphical content
management cost is easy to generate and manipulate, blends well with other XML
technologies and is useful for both client-side and server side and at last but not least SVG
means extremely portable graphical data.
The world of SVG is an infinite canvas. The area of the canvas that the document intends to
use is called the viewport. Its size is specified in the height and width attributes of the <svg>
element. The units can be pixels (default), points, centimeters, millimeters, inches etc.
Defines six basic shapes :

• circle : displays a circle element
• eclipse : displays a eclipse element
• line : display a line element
• rect : displays a rectangular element
• polyline : displays a series of lines with vertices at the specified points.
• polygon : similar to polyline, but adds a line from the last point back to the first,

creating a closed shape.
It has a standard text element and the the path element is the most flexible. It has one
attribute d (for data). <path d="M 40 60, L 10 60, L 40 30, Z, M 70 80, L 100 100"/> .This
sample means move to 40 60 then line to 10 60
SVG shares many of its styling properties with CSS (Cascading Style Sheets) and XSL. Thus
makes it extremely easy to change the look and feel of the current template by just providing
different values for the CSS style attributes. For a more detailed description for SVG please
look further at the [11, 12, 16 , 18].

1.5 Batik Overview
We just cannot go further without a small introduction in the used toolkit for rendering the
SVG templates. Batik is a Java language SVG toolkit that started summer of 2000 and is
supported by Sun Microsystems, Inc., Eastman Kodak Company, Koala team LOG, CSIRO.
It aims to deliver a Java Language toolkit to help developers generate, create, manipulate,
view and transform SVG content.
The Batik modules are of one of three types 1.1:

Page 7

• Application Modules
• Core Modules
• Low Level Modules

Figure 1.1: Batik Architecture

The Batik core modules are the heart of the Batik architecture and the ones used mainly and
by us are

• SVG Generator is a modules which contains SVGCanvas2D that lets all Java
technology applications easily convert their graphics to the SVG format, as easily as
they draw to a screen or a printer, by leveraging the Java 2D API's extensible design.

• SVG DOM an implementation of the SVG DOM API defined in the SVG
recommendation. It lets the programmer manipulate SVG documents in a Java
program.

• JSVGCanvas is a UI component that can display SVG content and let the user
interact with that content (zoom, pan, rotate, text selection, etc...)

• Transcoder is a module that provides a generic API for transcoding an input to an

Page 8

output. This module transcodes an input stream or a document into a particular output
format (e.g. conversion to jpeg).

And if you are curious about the license issues The Apache License allows you to download
and use for free, also to modify and redistribute (even for commercial purposes) but does not
guarantee anything else, and also provides legal protection for developers (IP and patent
issues etc.) Just one restriction: You must state that you're using software created by the
ASF.

1.6 Structure of the document
The project documentation contains a nine chapters in total including one for introduction to
the system one for used references and one for an appendix. The other six are summarized
bellow:

• Chapter 2 describes in details all the requirements for the dynamic display of such rich
view components. The functionality of project was also described from the a user’s
perspective.

• Chapter 3 gave an overview of the system design, we will see how the project is
divided into into three subsystem and how the main design goals - extensibility
performance, and reusability - are achieved. The actual implementation will be
described also in this chapter.

• Chapter 4 describes in details how to setup a working demo and to successfully
deploy and start the service or the standalone application. Include all needed
information and configuration parameters that can be usually set on the working
environment.

• Chapter 5 is important for everyone that wants to deploy extensions for the DWARF
system or to create nifty SVG templates. A number of tools are described, and also
how the special Comboview components are created like the speedometer or the
oilmeter.

• Chapter 6 focused on the future of Comboview tool. Despite of it’s current usefulness,
there still are many extensions which could make the project even more valuable. A
number of additional features were proposed.

Page 9

2 Requirements for the dynamic visualization
This chapter gives a more formal and more detailed description of the requirements for a
dynamic visualization tool. The chapter’s structure roughly follows the guidelines for
Requirements Analysis Documents (RADs) given in [10]. Readers who are new to
Comboview service, should read the section about functional requirements in order to get an
overview of the functionality of the tool. If you want to learn how to use the service, reading
the use cases is recommended as they show step-by-step how to operate the application and
also reading the chapter about setting up the demo is highly recommended.
Some sample usage scenarios are also shown which were used in the created
demonstrations of the project.

Figure 2.1: Initial Requirement

This is a picture of the initial requirement for the look that should be provided dynamically we
achieve more that 95% compatibility with it :) someone may say that our looks more realistic.

2.1 Usage Scenarios
Well there are two main usage scenarios of the project one is like a standalone application
and the other one is like a service in the DWARF platform and usually deployed on the car-
simulator device that controls the visualization of the front panel. In standalone mode one
could be able to manually load a SVG template, display it on the screen, resize it dynamically
update the data values on all text elements, hide or show given elements by their Ids, and

Page 10

modify the rpm values or the values for the oilmeter.
When deployed on the car-simulator the system should load the default template upon start,
register it needs for events to the underlying DWARF system and update its view dynamically
upon receiving events for the change in the state in some of the listened objects.
One other usage scenarios is creating such rich view 2D templates but it is something that is
separate from the implementation and one can follow the available how-to in chapter five for
further information. This last usage scenarios was not intended to be presented in the
demonstration of the system although it was required to be created.

2.2 Functional Requirements
The following sections give a high-level overview of the functionality of the ComboView tool.

• The graphic should be shown in 2D using Java.
• The display component should update its view dynamically from the underlying

environment.
• At least one of the created templates has to look similar to the fig 2.1
• A generic speedometer, rpm meter and oil meter components have to be created with

the ability to change their values dynamically.
• The system has to be integrated in the car-simulator at the Department for Ergonomics
• The view has to be created using vector graphics nor rasterized.
• A concept for creating such components has to be created.

2.3 Non Functional Requirements
We know that the nonfunctional requirements describe user-visible aspects of the system
that are not directly related with the functional behavior of the system. Here is a list of them
that were relevant to this system.

• Graphical User Interface The user interface should be intuitive to use and provide a
familiar “look and feel”.

• Response Time All tasks should be done maximum quickly to avoid nerving flickering
of the screen during repaints.

• Efficient The system rendering algorithm has to be made efficient to update just the
changed component and its children not the entire view and redundant events has to
be removed from the queue not to force unwanted updates.

• Extensibility ComboView tool should be extensible, especially with respect to adding
new components to the user interfaces and integrating more elements for
communication with the driver. More extensions are proposed in chapter six.

2.4 Pseudo Requirements
Pseudo requirements are requirements imposed by the client that restrict the implementation
of the system.

Page 11

The DWARF Software Environment The visualization tool must compile and run in the
current DWARF software environment.
Therefore it must be compatible with the following software:

• Linux 2.4
• GNU autotools (automake, autoconf)
• OmniORB

As hardware for the service the computer controlling the view of the front panel of the car-
simulator has to be used which was P3 650 and had Windows 98 as an OS.

Page 12

3 Design and Implementation
The purpose of this chapter is to give an overview over the structure of the application. It is
mainly of interest for future developers who wish to extend and change the application. Here I
will give general information about how to use the classes that the Comboview tool is made
of. If you are interested in the exact signature of each method, you should have a look at the
Javadoc that is available in appendix A. A full class and method documentation is extracted
from the source in a nicely formatted and cross-referenced documentation which is available
externally in HTML format. The chapter describes the classes of the three available
subsystems. Classes that do not belong to a particular subsystem are described at the end of
this chapter.

3.1 Design Goals
Reusable components: all components of project should work independently of each other,
so they can be reused easily in future projects. This also results in a clean design with clear
responsibilities.
Extensibility the Comboview should be extensible, especially with respect to the extensions
proposed in chapter 6.
Compatibility with DWARF: the Comboview tool must work together with the middleware
and existing DWARF services.
Performance: the visualization of the dynamically generated data has to be very quick
almost a game like performance is required at least 20 Frames per second are needed for a
smooth change between the states.

3.1 Class Design
The system consist of three components the first is responsibilities for the integration of the
tool into the DWARF and is called DWARF System Integrator, the second one responsible for
the visualization of the created Comboview templates is called Template Viewer and the last
one but not for importance is the component responsible for the dynamic modification of the
loaded templates is the Template Updater.
Dwarf System Integrator:
Consist of two classes they register the component as a service to the DWARF platform ,
start and stop the service upon request, keep log of the current executed operations and their
status, dispatch the received events to the registered listeners.
The class ComboViewDataReceiver fig 3.1 is who is actually listening to the needed events
from the DWARF system and is doing the dispatcher work. The class diagram can be seen
beyond and the full javadoc at the end of the document in the Appendix A.

Page 13

Figure 3.1: Class ComboViewDataReceiver

The class ComboViewService fig 3.2 is the start entry point of the service it is used to register
the ComboView service to the DWARF service manager to initialize the other subsystems
used for the visualization and updating the content, to register all the listeners for the needed
events queues and to administer the execution of the service.

Figure 3.2: Class ComboViewService

Template Viewer:
This module is responsible for the loading and rendering of the SVG templates either from
the filesystem or the classpath. It communicates directly with the Batik API for rendering and
can be extended to handle specific input devices and controls. It handles everything that has
to do with the UI visualization, configuration, calibrating of the display and relays on the
update module to change its state dynamically.
The ComboView class fig 3.3 is relevant to the loading and rendering of the SVG templates it
does not depend on any specific format of the file can be used as a generic SVG browser
and may show either dynamic or static content, it may handle also mouse or keyboard

Page 14

interaction with the users and support drag & drop. It depends actually on a JSVGCanvas
instance to handle most of the jobs done. The actual work for loading and rendering a SVG
template is summarized briefly here. After creating a JSVGCanvas instance the setURI()
method is called with a URI of the SVG document to load. If the URI is valid the
loadSVGDocument() method of the JSVGComponent class is called with the URI. In the
loadSVGDocument() method all document processing for the current document is stopped,
and then a DocumentLoader and SVGDocumentLoader are created. The
SVGDocumentLoader handles the firing of document loading events and the
DocumentLoader uses a SAXSVGDocumentFactory to create a SVGDocument instance.
The SAXSVGDocumentFactory in turn relies on a SAXDocumentFactory to parse the SVG
data referenced by the given URI. The JSVGCanvas relies on the
SVGDocumentLoaderListener, GVTTreeBuilderListener, and
SVGLoadEventDispatcherListener listeners that are added in the JSVGComponent
constructor in order to know what is going on with the loading, building, and rendering of the
SVGDocument. The listeners are implemented in the JGVTComponent.Listener and
JSVGComponent.SVGListener classes. When the document has finished being loaded and
parsed the setSVGDocument() method of the JSVGComponent class is called, which then
calls the installSVGDocument() method in the same class. The installSVGDocument()
method:
1. Gets rid of any resources from the previous document (if any)
2. Create a new BridgeContext to associate the SVG DOM and the GVT tree
3. Configures the component and BridgeContext instance based on the document state

(ALWAYS_STATIC, ALWAYS_DYNAMIC, ALWAYS_INTERACTIVE, AUTODETECT)
4. Creates a GVTTreeBuilder with the SVGDocument and BridgeContext
5. Initializes event handling for mouse and keyboard events
When the GVTTreeBuilder is done building the GVT tree the JSVGComponent performs
some additional configuration so that dynamic documents work correctly, and then calls the
scheduleGVTRendering() method of the JGVTComponent class. The
scheduleGVTRendering() method calls the renderGVTTree() method of the same class and:
1. Sets the size of the visible rect to be the size of the component
2. Creates either a static or dynamic image rendered based on the document state

(StaticRenderer or DynamicRenderer)
3. Finds the inverse of the rendering transform, which is set to the identity matrix
4. Creates a shape by transforming the rectangle found in step 1 with the matrix from step 3
5. Creates a GVTTreeRenderer and starts the rendering thread

Page 15

Figure 3.3: Class ComboView

SVGLoader fig 3.4 is the main entry point for the standalone application, it starts with a empty
frame and a button Load which displays a File Selection Dialog and after a proper template is
selected a Comboview element is created associated with the selected file and integrated
into the empty frame and also a GUI that allows to change dynamically the loaded document
is created and displayed for use to the user. This data modification dialog relies on the
update module to apply the needed modification made by the user and to update the
Comboview display appropriately. For more details please refer to the chapter four which
describes the functionality of the application and provides screenshots and to the included
Javadoc in Appendix A.
The last class from this module is the ScreenManager fig 3.5 which is responsible for the
configuration, entering and exiting the fullscreen mode. It can be used either as a part of this
module or standalone to allow a given JFrame to be displayed in fullscreen mode or normal
mode.

Page 16

Figure 3.4: Class SVGLoader

Please note that this class is extensively tested on windows and some Linux platforms but
the usage of it may bring some side effects especially if you are not using the latest jdks like
1.5+ that have support for OpenGL Java2D.

Figure 3.5: Class ScreenManager

Page 17

Template Updater:
This module is responsible for the updates made on the loaded SVG DOM tree and its task
are done by the two classed SVGDomUtil fig 3.6 and G2DUtil. The first one has built in
methods for scheduling and update in the Batik rendering system, change attributes to
elements given by their Ids like toggle visibility, change text, change position, change font
attributes etc. It has convenient functions that can be called everywhere from the code and
update any loaded SVG DOM model. Also exist support for the ComboView specific
components like the oilmeter, rpm indicators, etc. It defines also some useful constants that
are used in other parts of the system.

Figure 3.6: Class SVGDomUtil

The G2DUtil class is full of utility functions that help greatly when working directly with the

Page 18

Java2D API. It has methods to return all drawable points of a line to enable disable double
buffering thus increasing performance and allowing compatibility for the printing, to force
update in all frames that are started from the current VM, to draw arrows etc.

3.2 Use Cases
This is the only use case available for the Comboview service fig 3.7 there exist similar and
for the standalone application but as most parts of them are duplicated just this one will be
discussed.

Figure 3.7: Car-simulator Use Case
After successfully registering to a listener for events of type VehicleData and receiving such
one in the method onEvent() of the class ComboviewDataReceiver a decision is made upon
the type of the event and if he is carrying speed data and rpm data. The appropriate update
methods of the Comboview class are called which on their side dispatch them to the
updateModule method in the class SVGDOMUtil which is actually making the real
modification of the data and then is forcing an update in the Batik rendering.

Page 19

4 Comboview Demo
This chapter gives on overview how the Comboview Service used in DWARF or the
standalone template viewer are set up and what hardware was used to realize the different
demos.

4.1 The Demo Setup
The developed project consist of two independent usage scenarios one is as a service
integrated in the DWARF system and usually deployed directly on the computer that is
controlling the video display of the car simulator and the second one is as an independent
application that can be used to assist during the development of the different Comboview
templates.
The standalone viewer can be used also as a simple SVG browser for any given source SVG
file it has also builtin support for JavaScript and mouse events but no drag&drop or any
interaction with the browsed content is allowed at this point. We will focus in this chapter at
this two steps and discuss in details what are the requirements to successfully execute them.
For both applications is a requirement to have a Java Virtual Machine installed and
configured in your path and it has to be at least version 1.4+ . As a hardware a PC with at
least 300 Mhz and 64 Mb RAM is required or some degradations in rendering speed or too
often swapping will appear.
As a free disk space for the standalone application at least 20 Mb free disk space are
required and for the deployment of the DWARF and the Comboview Service at least 200 Mb
are required. Both applications are tested and successfully deployed on a Windows XP/Linux
(2.6 Kernel) although they should be able to run on any platform that fulfill their minimum
requirements for the availability of the JRE and the ability to run the DWARF system on it so I
can add to the list of supported but untested OS also Sun Solaris and some of the UNIX
variants like (FreeBSD etc.).

4.2 The Standalone Application

4.2.1 Windows
For this OS are prepared specially startup files in the form of a binaries and they load the
needed libraries at startup, search for available JREs and if not found shows an error dialog
containing a link to the SUN website where one can be downloaded and installed separately.
So if you look in the provided archive containing the binaries you will see the two files
“ComboView.exe” that start in full screen mode the current default SVG Comboview template
and change dynamically the speed and rpm values which are generated randomly from each
other and “SVGLoader.exe” that start the so called standalone application and can be used
to load various template change some of the properties of the elements and explore in
realtime the result. It can modify for example the text value of given elements, toggle the
visibility status, generate random speed or rpm values, modify the position of a child element
according the number or parent elements change the angle of a given arc element which is
actually used to display the rpm values. The next screen fig 4.1 shows all the available
options that can be modified using this application the dialog is showed after a successful
load of a SVG template from the application. If you would like to develop this application

Page 20

further please note that only project files for Intellij IDEA are provided but all the needed
sources, libraries and resources are included and it should be quite easy to create project for
Eclipse, Netbeans or your favorite Java source code editor with support for compilation. Ant
build file is also provided so you could easily modify the sources and compile without the
need to install IDE or some custom build system. Please follow the “Readme.txt” file in the
project directory for more information if you are interested in extending the current sources.

Figure 4.1: Data Changer Window WinXP

The next picture fig 4.2 is showing the changed template according to the provided options
from the screen above. The load button allow you to load other templates and the properties
screen above is recreated every time on the fly. If you like to open multiple templates at a
given time you can easily just start more than one instance of the provided binary file.
The SVGComponent is very performant and can come to updates every 30 mil sec on a
newer CPU 1.6+ normally it performs well on a CPU at 500 with updates every 100 mil sec
which was one of the test machines. This view is resized dynamically at resize of the parent
frame and cause of the nature of the vector graphics looks well even if it is scaled 10 or more
time positive. Normally one can select text components with the mouse but moving of
elements is not allowed for performant issues although it is supported by Batik. One can also
disable this features thus increasing the performance greater but some side effects appear
so tweaking that much the Batik platform is not encouraged.

Page 21

Figure 4.2: SVGView Window WinXP

4.2.2 Linux
There are no startup file for the standalone application for Linux OS but one can easily create
such one as all needed files are already provided. They should look something like
!#/bin/sh
<path_to_java_>/java -classpath <path_to_libraries> <full_main_class_name>
Both applications can be easily started from the Intellij IDEA as the project files are already
provided and they contain all the needed configuration internally.
There is no difference between the behavior of the applications on Windows or Linux so the
following screen-shots could be taken just as a proof that the application is working on Linux.
Please note that on some Linux platforms there may occur problems with exiting from full
screen mode which is discussed fully on the Java Sun Dev Forums but there is in most of the
cases no cure it is better to just ignore the entering the full screen mode just comment the
usage of the ScreenManager in the sources if a such problem occure. And the following
picture fig 4.3 show the SVG Viewer Control on on Fedora Core 4 with Gnome 2.10 which
view is modified according the data entered from the options dialog.

Page 22

Figure 4.3: SVGView Window FC4

4.3 The Comboview Service
For successfully using the Comboview Service you have to have prior successfully installed
or build the DWARF system. If you have precompiled binaries for you platform please skip
the next two steps and go directly to Step three.
1. Get the sources from the CVS:

cvs -d :ext:<your_user_here>@cvsnavab.informatik.tu-muenchen.de:/cvs/dwarf co -d
test_build -P .

2. Build the DWARF system

cd test_build
./bootstrap
cd build
../configure –prefix=/home/<your_user_here>/test_install --enable-tummicii
make all install

3. Start the DWARF platform

Page 23

cd
cd test_install/bin

Start three shells and execute:

shell 1> ./run-servicemgr
shell 2> ./DIVE
shell 3> ./java -jar ApplicationStarter.jar -DserviceName=TUMMICII

After successfully doing these three steps and if the car simulator is up and running and
generating appropriate events you should see on the deployment machine the following
display fig 4.4 which is updated dynamically.

Figure 4.4: SVGView Car-simulator

Page 24

5 How-to
In this chapter I will present two tutorials that will help you develop dwarf extensions and
beautifully templates using Adobe Illustrator.

5.1 Create & Deploy Dwarf Extensions
As most of the information regarding development of extensions is already collected and well
documented at the DWARF project web page and the DWARF Wiki server I have abandoned
the creation of this how-to so please look for more information at [1, 7, 14].

5.2 Create SVG Templates with Adobe Illustrator
Till now we all know that the principle behind creating the SVG templates is quite simple we
create the interface using some SVG capable graphics editor like Adobe Illustrator then we
group the elements according to the desired behavior like speedometer, light bulb, left or right
knob, oilmeter etc. We then set unique Ids for each group this can be done in the graphical
editor or in an external XML editor if it is not supported by default like if you are using
Inkscape not Adobe Illustrator.There are few things that I can summarize and you should
keep in mind when creating any type of SVG templates.

5.2.1 How-to create templates
1. Be Creative : Do not think that if something does not exist or it does not have any

logical structure it can not be simulated somehow. Almost 80 % of all shapes can be
created by just using composition of simple ones like rectangle, circle, eclipse, arc. If
you have problems simulating the shape take a real image import it into Illustrator and
try to trace it there exist also some external tools that do this job for you.

2. Logical Structure : Almost think about the logical structure of the template do not just
place your elements where you like cause later if you want quickly let say to hide a
given component or a sub-component it will be almost impossible without a proper
logical structure. Always choose a good human readable Ids for those elements cause
it someone else is working on the same document it will be harder for him to
understand the structure. So be cautious when creating the different layers. It is also a
good practice to separate the dynamic from the static content. The following fig 5.1 is
an example of a good logical structure that is following the prescribed rules.

Page 25

Figure 5.1: Illustrator Document View

3. Look for some existing samples. You do not need to find the wheel a lot of ready forms
and shapes and tricks exists and are well documented just do a little googling or see
some of the books for the illustrator or svg development.

Next I will show you which are the most used tools in Illustrator in what context can be used
and how are created the generic components in the template and the special ones using
them.

• For Drawing simple lines and shapes use some of the following tools:
• Line Segment tool
• Rectangle tool
• Rounded Rectangle tool
• Polygon tool

Page 26

• Ellipse tool
• Star tool
• Arc tool
• Spiral tool
• Rectangular Grid tool
• Polar Grid tool
• They are all available at the tools window and are straightforward to use

• Drawing with the Pencil tool You can do one of the following with the Pencil tool:
• Draw freeform paths
• Draw closed paths
• Add to a path
• Connect two paths
• Reshape paths

• Drawing with the Pen tool
• Draw Lines
• Draw Curves
• Draw Straight Lines followed by curves
• or Draw the opposite
• Draw two curved segments connected by a corner

• Reshaping paths
• To reshape curves select the anchor point on either end of the curved segment you

want to adjust
• To stretch parts of a path select the Reshape tool

• Adding, deleting, and converting anchor points
• Using the Pen tool to add and delete anchor points
• To convert between smooth points and corner points select the Convert Anchor

Point tool
• Smoothing and simplifying paths
• To Smooth paths use the Smooth Tool
• To Simplify paths use Object/Path/Simplify

• Erasing, splitting, and joining paths
• To erase part of a path use the Erase Tool
• To split a path use Scissors Tool
• To join two end points use the Join Tool

Page 27

• Tracing artwork This is very usefully for creating shapes from a raster graphics use
the Object/Live Trace/Make. You may need to specify tracing color and the selection
area to gain better results.

• Symbols A symbol is an art object that you can reuse in a document. For example, if
you create a symbol from a flower, you can then add instances of that symbol multiple
times to your artwork without actually adding the complex art multiple times. Symbols
are grouped usually in symbols libraries and they save time and greatly reduce size of
the document.

• Drawing flares The Flare tool creates flare objects with a bright center, a halo, and
rays and rings. Use this tool to create an effect similar to a lens flare in a photograph.

• Color/Fill/Strokes/Gradients are usually the same as you have seen before in any
other graphical editing tool so they wont be discussed in details.

Now lets see some concrete examples of creating the Comboview templates components:
• Simulate Light On/Off – this is the easiest task you have to change the color or the

color intensity of the element in your case P is Off D is on one can make easily toggle
buttons or long-short buttons where the pressing the button longer changes the
intensity if the element. In such way are made all indicators like the one for the oil
presence.

• Create Dynamic Text Element – just create a text element and give it an ID starting
with “TEXT”

• Add Bitmap Fonts/Glyphs – you will want to integrate such bitmap fonts if you want
your text to look the same on all platforms and you are using just a limited amount of
symbols thus saving space. Please note that the TTF fonts look different on different
OS and on different machines too and if lets say a given TTF font is missing it is not
clear with which one it will be replaces. So If you want the symbols to look the same on
all machines use bitmap fonts or import single glyphs into the template.

• Speedometer – the speedometer is created also easily it is actually a smaller circle
with dark color and a bigger arc that changes dynamically only the current angle so the
not needed part of the arc is cut from the circle that is staying above it. Just look at the
two components with ids SPEEDRIGHT and CIRCLERIGHT.

• Oilmeter – the oilmeter is also easy to implement you have a rectangular element that
is showing the current oil level and which position has to be changed according to the
parent child elements which in our case are 30.You see in the picture later on the oil
meter is the yellow marker nd the levels are given from the parent element 30 child
elements that are brown.

Page 28

• Animation – well there are some things that you cannot specify with Illustrator and
that is one of them you have to either manually modify the result SVG files or use
JavaScript or do some other custom SVG file transformation.

The next picture fig 5.2 shows a working screen from Illustrator the tools panel and the other
panels can be placed where you like and it is a matter more of personal taste.

Page 29

Figure 5.2: Illustrator in Action

The following picture fig 5.3 shows editing of the SVG template using Inkscape on Linux. It
does support most of the basic features of Illustrator but does not allow to specify the
elements id internally so you will have to use an external XML editor to do it. But for some
basic editing is quite impressive and really quick. A windows port of the application is
available also and it looks really promising.

Page 30

Figure 5.3: Inkscape In Action

You may use various tools when working with the SVG files the next two list contain almost
all that are available and are actively developed.

5.2.2 Tools For Viewing SVG

• SVG Viewer released by Adobe
• Batik SVG Toolkit
• CSIRO SVG Toolkit
• X-Smiles XML browser

Page 31

5.2.3 Tools For Creating SVG

• Designing with CorelDRAW
• Designing with Adobe Illustrator
• Designing with Jasc WebDraw
• Designing with Mayura Draw
• Designing with Virtual Mechanics’ IMS Web Engine
• Designing with XML Spy
• Designing with SVG Studio
• Designing with GraPL
• Designing with Oak Draw
• Designing with IsoDraw
• Designing with SVGmaker
• Designing with Plazmic Workshop Start

Please note that when exporting SVG files with Adobe Illustrator the following options need to
be taken into account.

5.2.4 Exporting to SVG
Adobe Illustrator 10/CS/CS2 allows to set SVG options when saving to this format. Some of
those options are not supported by Apache Batik (the one bundled with Cocoon 2.0.2), and
cause image generation to crash. Please save always using the following correct options.
Options Those options appear when save format is set to ".SVG".
Standard options :

Fonts > sub-settings :None
Images > location :Embed
Preserve Illustrator editing capabilities :checked
Advanced options :

CSS Properties :Presentation Attributes
Decimal Places :3
Encoding :ISO 8859-1
All other options :unchecked

Page 32

6 Future Work
Well the project has fulfilled all its requirements but there are always things that could be
improved and may be done either by me in a other phase of this project or by other person
that continues my work. Well I will just try to summarize my wish list shortly

• Drag & Drop support it will be really cool one to be able to change the position of the
created components with the mouse without the need to edit the template in the
Illustrator.

• Property editing this is another useful extensions. I wish that a seamless properties
editor will be made that allows to change the basic properties of the elements either on
single selected or over a set of objects lets say to set common color, font etc.

• Pure JS Implementation of the updating subsystem which is now implemented in
Java it will be really cool to integrate the Comboview Service in a browser using only
the Adobe SVG Plugin or any other available. A partial implementation exists but the
integration with the Corba system is missing and the speedometer component is not
fully implemented.

• Support Touchscreen devices although Java supports generically touchscreen
displays this will be really interested also from the driver point of view to test with the
featured support for mouse event lets say to make the Comboview Display interactive
not like now just to be updated from the events received from the car-simulator.

• More generic support for other type of templates why not make a whole bunch of
usable components switches, buttons, markers etc.

• Support for mobile devices there is a specification for Mobile SVG but the rendering
part has to be re-written from scratch in some of the rendering libraries that support
Symbian OS like tiny Svg.

Page 33

7 Conclusion
The previous chapters have given an overview of the functionality and the internal structure
of the Comboview Service and Standalone application. The focus of Chapter 2 were the
requirements for the visualization tool for SVG Templates. The functionality of project was
described from the a user’s perspective. This description included use cases and screen
shots. It has fully described all the requirements of the system. Chapter 3 gave an overview
of the system design, we saw how the project is divided into into three subsystem and how
the main design goals – extensibility, reusability and performance - are achieved. The actual
implementation was described also in this chapter. It gaves an overview over each class and
showed how the ComboView handles some interesting technical tasks. How to setup a
working demo or to successfully deploy and start the service is described with details in
Chapter 4 it includes all the needed information and configuration parameters that can be
usually set on the working environment. Chapter 5 is important for everyone that wants to
deploy extensions for the DWARF system or to create SVG templates. A number of tools are
described, also the way that the special Comboview components are created like the
speedometer or the oilmeter .Chapter 6 focused on the future of Comboview Service. Despite
of it’s current usefulness, there still are many extensions which could make the project even
more valuable. A number of additional features were proposed. The chapter also explained
how these features can be integrated into the current design.
The current version of the Comboview Service and Standalone application works reasonably
stable and has proven to be a valuable tool for the demonstration and improvement of the
human-machine interface on the car systems. It is used currently in the car-simulator and has
been successfully demonstrated on a number of occasions. More research has to be
conducted on what tools and processes are necessary in order to allow an easy development
of new SVG templates using other development tools and not the expensive Illustrator. One
other interesting question is how exactly to handle input from the driver.
As we have seen in chapter 6, the Comboview service can be extended to partly achieve
these goals, making it an even more useful tool for the exploring of the different issues in the
human-machine interface.

Page 34

8 Appendix
This chapter includes some useful information that is summarized and is aimed to help you
understand the structure and the content of the document better. It contains a Javadoc Index
that describe all public members and functions of the implemented classes and also a
glossary of all used therms that are not straightforward to understand.

A : Javadoc

A
asPath(Point2D[]) - Static method in class de.comboview.util.G2DUtil

Creates a GeneralPath object from the current Point array.
asPoints(PathIterator) - Static method in class de.comboview.util.G2DUtil

Creates a Point array representation of the PathIterator object.

B
button - Variable in class de.comboview.ui.SVGLoader

The button that triggers the load

C
calculateArea(Polygon) - Static method in class de.comboview.util.G2DUtil

Calculates the area of a given Polygon.
changeAngle(SVGDocument, String, String, String) - Static method in class
de.comboview.dom.SVGDomUtil

Creates a Runnable object that changes the angle of a given Arc Element of a given
SVGDocument.

changeText(SVGDocument, String, String) - Static method in class
de.comboview.dom.SVGDomUtil

Creates a Runnable object that changes the value of a given element from a given
SVGDocument.

changeYToPosition(SVGDocument, String, String, String) - Static method in class
de.comboview.dom.SVGDomUtil

Creates a Runnable object that changes the y possition attribute a given Element to
some other Element from a given SVGDocument.

COMBO_TEMPLATE - Static variable in class de.comboview.ui.ComboView

ComboView - Class in de.comboview.ui
The Combo view class is used to display the combo panel in full screen mode and to
update it upon receiving events from DWARF framework.

ComboView() - Constructor for class de.comboview.ui.ComboView

ComboViewDataReceiver - Class in de.comboview

Page 35

This is a Dwarf event receiver for the VehicleData events updates the ComboViewer if
active with the current data received from the corba system.

ComboViewDataReceiver(boolean, boolean, ComboView) - Constructor for class
de.comboview.ComboViewDataReceiver

Construct a new VehicleData event receiver.
ComboViewService - Class in de.comboview

This is a Dwarf service that is responsible for the initialization of the event
listeners/starting stopping the service registering and starting of the gui etc.

ComboViewService() - Constructor for class de.comboview.ComboViewService

computeFreeDimension(Frame) - Static method in class de.comboview.util.G2DUtil
Returns the free dimension of a given Frame.

computeIntersection(Line2D, Line2D, Point2D) - Static method in class
de.comboview.util.G2DUtil

Computes the intersection between two Lines.
constructSVGArc(int, int, int, int, int, int, int, int, int) - Static method in class
de.comboview.dom.SVGDomUtil

Constructs an SVG arc from the given paremeters.
convert(Integer[]) - Static method in class de.comboview.util.G2DUtil

Convert an array of Integer objects to ints
createAbilityObject(AbilityDescription) - Method in class
de.comboview.ComboViewService

createCompatibleImage(int, int, int) - Method in class de.comboview.util.ScreenManager

Creates an image compatible with the current display.
createComponents() - Method in class de.comboview.ui.SVGLoader

Create and initializes the root gui component and all its children.
createNeedObject(NeedDescription) - Method in class de.comboview.ComboViewService

D
DASHED - Static variable in class de.comboview.util.G2DUtil

de.comboview - package de.comboview

de.comboview.dom - package de.comboview.dom

de.comboview.ui - package de.comboview.ui

de.comboview.util - package de.comboview.util

disableDoubleBuffering(Component) - Static method in class de.comboview.util.G2DUtil

Disable double buffering for the given component.
displayModesMatch(DisplayMode, DisplayMode) - Method in class
de.comboview.util.ScreenManager

Determines if two display modes "match".
DOTTED - Static variable in class de.comboview.util.G2DUtil

Page 36

drawArrow(Graphics2D, int, int, int, int, float) - Static method in class
de.comboview.util.G2DUtil

Draws an arrow in the current java2d context using the start and end coordinates and
the headlenght and width.

drawArrow(Graphics2D, int, int, int, int, int, int) - Static method in class
de.comboview.util.G2DUtil

Draws an arrow in the current java2d context using the start and end coordinates and
the headlenght and width.

drawBorder(Graphics2D, Paint, Rectangle) - Static method in class
de.comboview.util.G2DUtil

Draws a border around the given Rectangle.
dumpProperties(SVGDocument, String) - Static method in class
de.comboview.dom.SVGDomUtil

Creates a Runnable object that dumps the values of the attributes of a given Element
from a given SVGDocument.

duplicatePolygon(Polygon) - Static method in class de.comboview.util.G2DUtil
Returns a copy of the current Polygon Object

E
enableDoubleBuffering(Component) - Static method in class de.comboview.util.G2DUtil

Enables double buffering for the given component.
ESCAPE_KEY_CODE - Static variable in class de.comboview.ui.ComboView

F
fillBackground(Graphics2D, Rectangle, Paint, Insets) - Static method in class
de.comboview.util.G2DUtil

Fills a given Rectangle with an given Color.
findFirstCompatibleMode(DisplayMode[]) - Method in class
de.comboview.util.ScreenManager

Returns the first compatible mode in same list of modes.
formatRPM(double) - Method in class de.comboview.ui.ComboView

Format the rpm according to the predefined rules.
formatSpeed(double) - Method in class de.comboview.ui.ComboView

Format the speed according to the predefined rules.
frame - Variable in class de.comboview.ui.SVGLoader

The actual frame gui.

G
G2DUtil - Class in de.comboview.util

Some very usefull Graphics2D utility functions.
G2DUtil() - Constructor for class de.comboview.util.G2DUtil

Page 37

generateRandomRPM() - Static method in class de.comboview.dom.SVGDomUtil
Generate a random rpm in format <0-MAX_SPEED/>.<0-MAX_DECIMAL/>.

generateRandomSpeed() - Static method in class de.comboview.dom.SVGDomUtil
Generate a random speed in format <0-MAX_SPEED/>.<0-MAX_DECIMAL/>.

getAllIDs(SVGDocument) - Static method in class de.comboview.dom.SVGDomUtil
Returns all Element Id attributes from a given SVG document.

getCompatibleDisplayModes() - Method in class de.comboview.util.ScreenManager
Returns same list of compatible display modes for the default device on the system.

getCurrentDisplayMode() - Method in class de.comboview.util.ScreenManager
Returns the current display mode.

getFullScreenWindow() - Method in class de.comboview.util.ScreenManager
Returns the window currently used in full screen mode.

getGraphics() - Method in class de.comboview.util.ScreenManager
Gets the graphics context for the display.

getHeight() - Method in class de.comboview.util.ScreenManager
Returns the height of the window currently used in full screen mode.

getIntersection(Line2D, Line2D) - Static method in class de.comboview.util.G2DUtil
Returns the point of intersection between two line segments or null if there is no
intersection.

getQualityRenderingHints() - Static method in class de.comboview.util.G2DUtil
Returns RenderingHints that make better Java2D rendering output.

getSpeedRenderingHints() - Static method in class de.comboview.util.G2DUtil
Returns RenderingHints that speed up the Java2D rendering output.

getTextHeight(Graphics) - Static method in class de.comboview.util.G2DUtil
Return the displayable height of a string using the given Graphics context.

getTextWidth(Graphics, String) - Static method in class de.comboview.util.G2DUtil
Return the displayable width of a string using the given Graphics context.

getWidth() - Method in class de.comboview.util.ScreenManager
Returns the width of the window currently used in full screen mode.

H
HI_RES_MODES - Static variable in class de.comboview.ui.ComboView

I
init() - Method in class de.comboview.ui.ComboView

Initializes the GUI in full screen mode and loads the desired SVG Template.
initGUI() - Method in class de.comboview.ui.ComboView

Init all gui components of the Comboviewer.
initLogger() - Static method in class de.comboview.ui.SVGLoader

Helper function that is used to initialize the log4j accordingly.

L
label - Variable in class de.comboview.ui.SVGLoader

Page 38

some label
lineBresenham(int, int, int, int) - Static method in class de.comboview.util.G2DUtil

Creates a line according to bresenheim alg using the given start and end coordinates.
loadTemplate() - Method in class de.comboview.ui.ComboView

Loads the defined svg template from the system classpath.
lostEventChannel() - Method in class de.comboview.ComboViewDataReceiver

Case that some event is lost during the transportation.

M
main(String[]) - Static method in class de.comboview.ComboViewService
Used to start and stop the service.
main(String[]) - Static method in class de.comboview.ui.ComboView

main(String[]) - Static method in class de.comboview.ui.SVGLoader

used for testing only
MAX_ARC - Static variable in class de.comboview.ui.ComboView

MAX_DECIMAL - Static variable in class de.comboview.dom.SVGDomUtil

which is the max int that can be shown after the decimal sign.
MAX_RPM - Static variable in class de.comboview.dom.SVGDomUtil

The max rpm that can be shown.
MAX_RPM - Static variable in class de.comboview.ui.ComboView

MAX_SPEED - Static variable in class de.comboview.dom.SVGDomUtil
The max speed that can be shown.

mode - Variable in class de.comboview.util.ScreenManager

N
NEED_TYPE_VEHICLE_DATA - Static variable in class de.comboview.ComboViewService

The required event data type.

O
onEvent(IDLEntity, String) - Method in class de.comboview.ComboViewDataReceiver

A new event is received.

P
POINTS_NAME - Static variable in class de.comboview.dom.SVGDomUtil

Page 39

R
repaintAllFrames() - Static method in class de.comboview.util.G2DUtil

Updates all visible frames in the current Java VM.
restoreScreen() - Method in class de.comboview.util.ScreenManager

Restores the screen's display mode.
rotate(BridgeContext, Element, double, Element) - Static method in class
de.comboview.dom.SVGDomUtil

Rotates a given Element with the given angle according to a Element center.
ROUND_BIG - Static variable in class de.comboview.util.G2DUtil

ROUND_MEDIUM - Static variable in class de.comboview.util.G2DUtil

RPM_ID - Static variable in class de.comboview.ui.ComboView

runThread() - Method in class de.comboview.ComboViewService

S
scheduleUpdate(JSVGCanvas, Runnable) - Static method in class
de.comboview.dom.SVGDomUtil

Causes the SVGCanvas to sunc its visual representation with the underlying data.
screen - Static variable in class de.comboview.ui.ComboView

ScreenManager - Class in de.comboview.util

The ScreenManager class manages initializing and displaying full screen graphics
modes.

ScreenManager() - Constructor for class de.comboview.util.ScreenManager
Creates same new util.ScreenManager object.

SERVICE_NAME - Static variable in class de.comboview.ComboViewService
The service name.

setFontFamily(SVGDocument, String, String) - Static method in class
de.comboview.dom.SVGDomUtil

Creates a Runnable object that changes the font-family attribute of all attributes that
start with the given Id in a given SVGDocument.

setFullScreen(DisplayMode, Component) - Method in class
de.comboview.util.ScreenManager

Enters full screen mode and changes the display mode.
show() - Method in class de.comboview.ui.SVGDomModifierUI

SPEED_ID - Static variable in class de.comboview.ui.ComboView

STARTING_ANGLE - Static variable in class de.comboview.dom.SVGDomUtil

The starting angle of the RPM display
stop() - Method in class de.comboview.ui.ComboView

Terminates the GUI.
stopGeneration - Static variable in class de.comboview.ui.ComboView

Page 40

Flag indicating if the generation of speed and rpm values should continue.
svgCanvas - Variable in class de.comboview.ui.ComboView

svgCanvas - Variable in class de.comboview.ui.SVGLoader
the svg canvas that is responsible for the load of the svg documents

SVGDomModifierUI - Class in de.comboview.ui
The GUI Component that is able to modify dynamically some options and values in a
given SVG rendering output from Batik.

SVGDomModifierUI(JSVGCanvas) - Constructor for class
de.comboview.ui.SVGDomModifierUI

SVGDomUtil - Class in de.comboview.dom

Utility class that contains usefull functions for manipulation of the DOM model of a given
SVG file.

SVGDomUtil() - Constructor for class de.comboview.dom.SVGDomUtil

SVGLoader - Class in de.comboview.ui
The main entry point for the SVG Application.

SVGLoader(JFrame) - Constructor for class de.comboview.ui.SVGLoader
Default Contrustor.

T
TEMPLATE_BACKGROUND - Static variable in class de.comboview.ui.ComboView

toggleVisibility(SVGDocument, String) - Static method in class
de.comboview.dom.SVGDomUtil

Creates a Runnable object that toggles the visibility a given Element from a given
SVGDocument.

toString(int[]) - Static method in class de.comboview.util.G2DUtil
Convert an array of ints to string usefull for debug outputs

translate(BridgeContext, Element, double, double) - Static method in class
de.comboview.dom.SVGDomUtil

Translates a given Element with the given coordinates

U
update() - Method in class de.comboview.util.ScreenManager

Updates the display.
updateModel(String, String, String, String) - Method in class de.comboview.ui.ComboView

Used to update the SVD DOM model and update its graphical representation.
updateRPM(double) - Method in class de.comboview.ui.ComboView

Updates the ComboView with the new rpm value.
updateSpeed(double) - Method in class de.comboview.ui.ComboView

Updates the ComboView with the new speed value.

Page 41

V
view - Variable in class de.comboview.ComboViewDataReceiver

view - Variable in class de.comboview.ComboViewService
The combo viewer of the service

VISIBILITY_NAME - Static variable in class de.comboview.dom.SVGDomUtil

VISIBILITY_VALUE_HIDDEN - Static variable in class de.comboview.dom.SVGDomUtil

VISIBILITY_VALUE_VISIBLE - Static variable in class de.comboview.dom.SVGDomUtil

B: Glossary
Bitmap graphics Bitmap or raster formats treat each graphic as a collection of dots called
bitmap, assigning a specific color to each pixel. When viewed as a whole, this collection
makes up an image.
Filter effects “A filter effect consists of a series of graphics operations that are applied to a
given source graphic to produce a modified graphical result.”(W3C, 2001)
SMIL “The Synchronized Multimedia Integration Language (SMIL, pronounced "smile")
enables simple authoring of interactive audiovisual presentations. SMIL is typically used for
"rich media"/multimedia presentations which integrate streaming audio and video with
images, text or any other media type. SMIL is an easy-to-learn HTML-like language, and
many SMIL presentations are written using a simple text-editor.” (W3C, 2002)
SVG SVG is the acronym for “Scalable Vector Graphics”, which is a XML- based vector
graphic standard for Web graphics developed by the World Wide Web consortium (W3C).
Vector graphics Vector images are built up of many individual, scalable geometric objects
defined by mathematical functions. Hence they consist of lines, curves, paths and other
shapes. Therefore it is possible to render them at the highest feasible quality level.
W3C “The World Wide Web Consortium was created in October 1994 to lead the World
Wide Web to its full potential by developing common protocols that promote its evolution and
ensure its interoperability. W3C has more than 500 Member organizations from around the
world and has earned international recognition for its contributions to the growth of the Web.”
(W3C, 1999).
XHTML “XHTML 1.0 is the W3C's first Recommendation for XHTML, following on from earlier
work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML 2.0. With a wealth of features, XHTML
1.0 is a reformulation of HTML 4.01 in XML, and combines the strength of HTML 4 with the
power of XML.
XHTML 1.0 is the first major change to HTML since HTML 4.0 was released in 1997. It brings
the rigor of XML to Web pages and is the keystone in W3C's work to create standards that
provide richer Web pages on an ever increasing range of browser platforms including cell
phones, televisions, cars, wallet sized wireless communicators, kiosks, and desktops.”
(W3C, 2002)

Page 42

XML Stands for “Extensible Markup Language”. XML was also developed by the W3C in
1996. More information can be found at http://www.w3.org/XML/
XSL-FO With the help of XSL-FO stylesheets you can transform your XML document to any
desired output format intended for printing like PostScript or PDF.
XSLT XSLT is a markup language for transforming XML documents into other XML
documents, HTML or WML documents or any other imaginable formats.
DOM The DOM (Document Object Model) provides a unique identifier and access to all
objects of a web page, including tables, images, graphical objects, etc. This is implemented
in a hierarchical way so that a script can identify and modify each single object. The main
issue of a clean DOM is that web−based applications usually use a lot of different formats,
engines and plugins. However, communication often stops at applications, based on
proprietary plugins.
Java2D This is not a graphics format but a very sophisticated graphics library for Java
developers.
Transformations Each element and group may be transformed: translated, resized, rotated
and skewed. Transformations may be nested (be careful to use the correct order!) or defined
using transformation matrices. This way, it is possible to do all affine transformations

Page 43

9 Bibliography
[1] Dwarf Project Homepage. Technische Universität München.
http://www.augmentedreality.de
[2] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riss, C. Sandor, and M. Wagner, Design of a Component–Based Augmented
Reality Framework, in Proceedings of the International Symposium on Augmented
Reality – ISAR 2001, New York, USA, 2001.
[3] Object Management Group, The Common Object Request Broker: Architecture
and Specification.
http://www.omg.org/technology/documents/vault.htm#CORBA_IIOP
[4] Object Management Group, Corba Notification Specification.
http://www.omg.org/technology/documents/vault.htm#svc_and_fac
[5] B. Stroustrup, Die C++-Programmiersprache, Addison-Wesley-Longman, Bonn,
3rd ed., 1998.
[6] JUnit Homepage.
http://www.junit.org
[7] Log4j.
http://logging.apache.org/log4j/docs/
[8] K. BECK and E. GAMMA, Test Infected – Programmers Love Writing Tests.
http://members.pingnet.ch/gamma/junit.htm
[9] I.E. Sutherland: The Ultimate Display, invited lecture, IFIP Congress 65
[10] Bernd Brügge, Allen H Dutoit: Object-Oriented Software Engineering,
Prentice Hall, New Jersey 2000
[11] W3C: Scalable Vector Graphics.
http://www.w3.org/Graphics/SVG/
[12] W3C: Web Accessibility Initiative.
http://www.w3.org/WAI/
[13] Apache XML Project: Batik.
http://xml.apache.org/batik/
[14] IBM Developer Works.
http://www.ibm.com/developerworks/web/library/x-svgint/
[15] SVG Developers Yahoo Group.
http://groups.yahoo.com/group/svg-developers/
[16] Document Object Model (DOM) Level 2 Core Specification. World Wide Web
Consortium recommendation.
http://www.w3.org/TR/DOM-Level-2-Core
[17] SVG Test Suite.
http://www.w3.org/Graphics/SVG/Test/
[18] CSVG Home Page.
http://www.cs.washington.edu/homes/gjb/CSVG/
[19] Java 2D API.
http://java.sun.com/products/java-media/2D/index.html
[20] Adobe SVG Plugin
http://www.adobe.com/svg
[21] Adobe SVG Tutorial
http://www.adobe.com/svg/tutorial/intro.html

Page 44

[22] Sun XML Developer Connection - Introduction to SVG
http://www.sun.com/software/xml/developers/svg
[23] Overview presentation of SVGs
http://www3/Consortium/Offices/Presentations/SVG
[24] X-Smiles – an open xml browser for exotic devices.
http://www.xsmiles.org/index.html
[25] Apache Cocoon.
http://cocoon.apache.org
[25] DWARF Project
http://wwwnavab.in.tum.de/Chair/ProjectDwarf
[26] David Kiley and Earle Eldridge, USA Today May 30,2002, "Car dashboards look more
and more like jet cockpits; High-tech doodads tempt drivers to multi-task"
[27] S.J. Buckley and B.L. McClanahan, "Rear Speed Display: A Mnemonic Device to
Improve Driver Situational Awareness", Proceedings, ISATA '97, June 1997.

Page 45

