EXPECTATION MAXIMIZATION FOR EMISSION
TOMOGRAPHY

MORITZ BLUME

MATHEMATICAL PRELIMINARIES

Notation. Vectors like v will be denoted by roman (= serif) bold italic letters.
v; denotes the i-th component of v. Matrices will be written in upper-case roman
bold italic letters, e. g. M, M;; being an entry at row ¢ and column j.
Images will be stored in vectors by lexicographic ordering. For a two dimensional
image with dimension m x n the order of pixels stored in a vector is (0,0), (1,0),
.., (m,0), (0,1), ..., (m,1), ..., (0,n), ..., (m,n). For three dimensional images
this works completely analog.

Probability Theory. Since the EM framework involves probabilistic modeling,
the reader should be familiar with some basic concepts from probability theory.
The text should at least cover topics like random variables, expectation values,
conditional probabilities, conditional expectations and Poisson distributions and
its properties. We recommend our own tutorial [2] which is still a draft but at least
covers all topics necessary for the understanding of this tutorial.

1. INTRODUCTION

The basic problem of image reconstruction in Emission Tomography (ET) - be
it SPECT or PET - is to estimate an original image vector f from the base of
measured count numbers stored in a vector g. An entry f; stores the number of
events that took place inside voxel ¢ during a specific measurement period. g; stores
the number of events that occurred in tube j. A tube in PET is defined by two
detector elements, in SPECT by one detector element.

The estimation is only possible if some information about the imaging process
is available. A very essential information is the probability of detecting an event
originated from box j in detector tube i:

(1) P(event detected in tube i | event occurred in box j) = H;;

where h is called the system matrix.
The average/expected number of events detected in tube 4 is then E[g;] =
Zj H;j; f;. In matrix-vector notation:

(2) Elg]=Hf .
In essence, image reconstruction algorithms try to invert this equation in order
to solve for the image f. One of the best known and mostly applied algorithms
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is the Expectation Maximization algorithm. The general scheme was proposed by
Dempster et al. in 1977 [3]. It is used in numerous scientific disciplines. Since the
algorithm is so general, it has to be adopted to each specific case. For ET, this has
been done in 1982 by Shepp and Vardi [4].

2. EXPECTATION MAXIMIZATION FOR EMISSION TOMOGRAPHY

If you are not familiar with the EM algorithm you will have to refer to additional
sources. We especially recommend our own tutorial [1] and the cited sources there.

Remember that the EM algorithm is a general iterative scheme that helps to
solve maximum likelihood problems by introducing a so-called hidden random vari-
able.

The predominant questions of an application of an EM scheme to ET are: Why
do we want to apply the EM algorithm to ET? How do we apply it?

The answer to the first question is not that simple. In fact, exactly the same
iterative formula that results from the EM scheme can be derived by simply calcu-
lating the maximum likelihood estimate of the incomplete data (as will be shown
in the next section). The main reason why it is very convenient to know that we
are using an EM algorithm is that we do not have to study things like convergence
etc. anymore, since this is already backed up by the numerous theoretical results
about the EM algorithm.

The answer to the second question is more difficult and we start by asking: What
is the complete and what the incomplete data in the case of ET?

As mentioned, the complete data term as used in the paper by Dempster et al.
is an artificial description for all the data that is necessary in order to estimate the
sought distribution parameters. In case of ET, g is the measured/observed data and
will be considered as incomplete, since we only know that something happened on
a certain tube but not from where exactly it originates. Accordingly, the complete
data will be defined as a matrix G, where G;; represents the number of detected
events in tube ¢ originated from box j. Of course, if we could observe G directly,
the solution to the whole problem would be simple:

(3) ijZsz .

We continue with developing the complete data likelihood function:

(4) L(f)=P(G|f)
(5) ZHHP(Gij|f)

N e
= E[Gi] 2wl
(6) o 1:[1:[e o Gij! '

We get from (4) to (5) by taking advantage of the independency of the random
variables G;, and from (5) to (6) by inserting the definition of the Poisson distri-
bution.

Since maximizing the log-likelihood gives the same result but is easier to do we
define
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(7) I(f) = In L(f)
(8) - Z Z —E[Gy] + Gij mE[Gy] — InGy!

Since E [Gj;] is the expected number of emissions from voxel j measured in tube
i, it is directly related to the probability H;; of an emission from voxel j being
measured in tube ¢:

(9) B[Gi] = fiHi;
So, the log-likelihood is

(10) W)=Y —fiHij+ Gy f;H;; —InGy!
i g

Since ! depends on Gj;, which are unknown measurements, we cannot directly
calculate the ML estimate for f. That’s where the EM algorithm comes into the
game: we treat [ as if it was a random variable, since in fact it 7s a random variable
because a function that depends on a random variable (G;; in this case!) is a
random variable by itself! So, instead of maximizing [ directly, we maximize its
expected value. The EM algorithm can be written down in one line:

(1) FOrD = argmaxE [1()]g, £
f

2.1. Expectation-Step. The expectation step consists in calculating

(12) E[1(£)g. £
We insert the log-likelihood function from (10):

(].3) E Zz—fjHij +G7;j lnfjHZ-j —lnGij! g, f(n)

J

Due to linearity of expectation we get
(14) >0 (—fsz'j +E {Gij g, fA(")} In fjH;; — E [hl Gisllg, f(")D
i

Now, in order to proceed, we have to calculate the expectation [E [Gij| g, f(”)}.

This is a bit tricky. Since g; = > y Gij, Gyj is conditioned to the fact that we already
know about the sum > y G;;. Probability theory states that if we have independent
Poisson random variables, the conditional probability distribution given the sum

of its values is a Binomial distribution with parameters (Z j Gij, %) With
g T

the expectation of a Binomial distribution (a, b) being ab and with E [G,;] = f; Hj,
we get
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f;n)Hij

S ) Hi
Intuitively the expectation of G; is corrected by the real number of measured events
compared to the number of measured events according to the image estimate (note

that ——%5— is a value close or equal to one...).
S te  Hik
We are not interested in the second expectation since it will fall away anyway in

the maximization step...

(15) E|Gilg £ = g

2.2. Maximization-Step. Now, since the expectation is developed, we can go on
in the EM algorithm (refer (11)) and maximize this expectation. We will do this
by setting the derivative equal to zero:

(16) 572 (19,7 =0
(17) <:>Z_Hil+ZE[Gil|gvf(n)} %:0
ZZ—E [Gil‘g7f(n)}

Zi H;

fl(n) H;g;
(19) & fi= -
2 Ha ZL: > A H;
In fact, this f; is the I-th component of our new estimate, and so we denote the
EM algorithm finally as

(18) & fi=

F(n fl(n) Hilgi
: 2 Hi Zz: Dok f;ﬁ")Hug
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