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Agenda 

•  Problem statement and application 

•  Software features 

•  Recovering the Full Pose from a Single Keyframe  

•  Outline of future work 
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Application Overview 

•  Discrepancy check between CAD data and built items 

3D Model used as Planning for Construction Finished Construction 

?
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Application Overview 

•  Support engineer in charge of this verification task 
•  Project started in February 2006 
•  Consortium of CAMP – Siemens CT – Areva NP 

”[…] senior project manager at Siemens, estimates that the software will reduce 
the cost of constructing a typical medium-sized coal-fired power plant by more 
than $1m." The economist 2007 
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Photo-based Augmented Reality 

Single frame augmentation 
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Requirements 
1.   Interaction 
2.   Registration 



3D User Interface for an Augmented CAD Software 

•  New paradigm requires new interactions 
–  Extension of 2D zoom/pan interface to Mixed views 

6 

Image Frustum 

Center of Projection 

Focus 

Area of Interest 

Mixed View 

Field of View 

Navigation Tools for Viewing Augmented CAD Models to appear in IEEE CGA Nov./Dec. 



3D User Interface for an Augmented CAD Software 

•  New paradigm requires new interactions 
–  Intuitive 3D image navigation 

•  No points track are required 
•  No Model is considered 
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Landmark-based Registration  

•  Goal  
–  Register images to the CAD coordinate system 

•  Approach 
–  Extract landmarks (Anchor-Plates) from images 
–  Find corresponding 3D landmarks 
–  Compute the Pose (Rotation, Translation) 

•  Limitation 
–  Need of 2d visible Landmarks 

An Industrial Augmented Reality Solution For Discrepancy Check Georgel et Al. ISMAR‘07 8 



Automatic 6 DoF Stereo Registration 

•  Goal  
–  Register images using a unique keyframe 

•  Approach 
–  Compute epipolar geometry using keypoints 
–  Extend the relative pose to a full pose using  

•  Planar structure 
•  2d-3d correspondences 

–  Non-linear estimation 
•  Bundle adjustment with planarity constraint 
•  Hybrid pose estimation that includes intensities 
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Propagated 2d-3d correspondences 

Extracted planar structure 

Georgel et. Al. ISMAR 2008, ISMAR 2009, WACV 2009  
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Agenda 

•  Registration 

•  Registration with single keyframe 
–  Challenges 
–  Initial scale estimates 
–  Non-linear refinement 

•  Results 
–  Synthetic experiments 
–  Plant inspection images 

•  Closing statement 
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Registration 
Find Geometric Transform between CAD and Image 

•  Marker based [1,2] 
•  External tracking system 

–  Magnetic [3] 
–  Optical [4] 
–  GPS + Compass [5] 

•  Model based approach 
–  Edges [6,7] 
–  Keyframes (Multiple [8], Unique with model [9, 10]) 

[1] Goose et al. Speech-enabled augmented reality supporting mobile industrial maintenance. Pervasive Computing 2003. 
[2] Pentenrieder et al. Augmented Reality-based factory planning - an application tailored to industrial needs.  ISMAR, 2007. 
[3] Webster et al. Architectural Anatomy. Presence, 1995. 
[4] Schoenfelder & Schmalstieg. Augmented Reality for Industrial Building Acceptance. IEEE VR, 2008. 
[5] Schall et al. Virtual redlining for civil engineering in real environments. ISMAR, 2008.  
[6] Lowe. Fitting parameterized three-dimensional models to images.  IEEE Trans. PAMI, 1991. 
[7] Drummond & Cipolla. Real-time tracking of complex structures with on-line camera calibration. BMVC, 1999. 
[8] Chia et al. Online 6 dof augmented reality registration from natural features. ISMAR, 2002. 
[9] Vacchetti et al. Stable real-time 3d tracking using online and offline information. IEEE Trans. PAMI, 2004. 
[10] Platonov et al. A mobile markerless AR system for maintenance and repair. ISMAR, 2006. 12 



Full Pose from Single Keyframe 
Challenge 

•  Compute fundamental matrix using 
keypoints Target 

Image Keyframe 

Local 
Features 

Epipolar 
Lines 

F〈pi, qi〉
q!i Fpi = 0
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E

Full Pose from Single Keyframe 
Challenge 

•  Compute fundamental matrix using 
keypoints 

•  Derivation of essential for calibrated 
cameras [11] 

Target 
Image Keyframe 

Local 
Features 

Epipolar 
Lines 

E = K!
T FKS

[11] Hung and Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE Trans. PAMI, 1989. 

〈pi, qi〉
q!i Fpi = 0
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[11] Hung and Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE Trans. PAMI, 1989. 

Full Pose from Single Keyframe 
Challenge 

•  Compute fundamental matrix using 
keypoints 

•  Derivation of essential for calibrated 
cameras [11] 

•  Essential matrix decomposition  
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[11] Hung and Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE Trans. PAMI, 1989. 

Full Pose from Single Keyframe 
Challenge 

•  Compute fundamental matrix using 
keypoints 

•  Derivation of essential for calibrated 
cameras [11] 

•  Essential matrix decomposition 

  Unknown translation norm  
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[11] Hung and Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE Trans. PAMI, 1989. 

Full Pose from Single Keyframe 
Challenge 

•  Compute fundamental matrix using 
keypoints 

•  Derivation of essential for calibrated 
cameras [11] 

•  Essential matrix decomposition 

•  Bundle adjustment  cost 
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[11] Hung and Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE Trans. PAMI, 1989. 

Full Pose from Single Keyframe 
Challenge 

•  Compute fundamental matrix using 
keypoints  

•  Derivation of essential for calibrated 
cameras [11] 

•  Essential matrix decomposition 

•  Bundle adjustment  cost 
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E = [t]×R

CG (Mi,R, t) =
n∑

i=1

+ ‖Ksw (Mi)− pi‖2

‖Ktw (RMi + t)− qi‖2

∀s "= 0, CG (sMi,R, st) = CG (Mi,R, t)
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Full Pose from Single Keyframe 
Challenge 

Baseline Direction 

Target Image 

Keyframe 

pi

qi

Mi
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•  We suppose that  we know      and 

Full Pose from Single Keyframe 
Challenge 

Baseline Direction 

Target Image 

Keyframe 

t (‖t‖ = 1)R
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•  We suppose that  we know      and 
•  We search for  

Full Pose from Single Keyframe 
Challenge 

Baseline Direction 

Target Image 

Keyframe 

t (‖t‖ = 1)R
s
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Full Pose from Single Keyframe 
Common Approach 

•  Using a known 3D distance D

Baseline Direction 

Target Image 

Keyframe 

A

B

d1 = ‖AB‖

1
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Full Pose from Single Keyframe 
Common Approach 

•  Using a known 3D distance D

Baseline Direction 

Target Image 

A

B

d1 = ‖AB‖

1

s =
D

d1
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Full Pose from Single Keyframe 
Common Approach 

•  Using the location of a known 3D point in the target image 〈M,q〉

Baseline Direction 

Target Image 

Keyframe M

q
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Full Pose from Single Keyframe 
Common Approach 

•  Using the location of a known 3D point in the target image 〈M,q〉

Baseline Direction 

Target Image 

Keyframe M

q
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t q
]
× t
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t q
]
×RM

∥∥∥
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∥∥∥
2
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Full Pose from Single Keyframe 
Common Approach 

•  Using a known 3D distance 

•  Using the location of a known 3D point in the target image 

s = −

([
K−1

t q
]
× t

)# [
K−1

t q
]
×RM

∥∥∥
[
K−1

t q
]
× t

∥∥∥
2

〈M,q〉

s =
D

d1

D

   Both methods requires interactions 
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•  We suppose that  we know      and 
•  We search for  

Full Pose from Single Keyframe 
Method Overview 

Baseline Direction 

Target Image 

Keyframe 

t (‖t‖ = 1)R
s
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C

l
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Full Pose from Single Keyframe 
Initial Estimates 

c

C

l
•  Every point on a line gives a scale 
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Full Pose from Single Keyframe 
Initial Estimates 
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Full Pose from Single Keyframe 
Initial Estimates 

c

C

l
•  Every point on a line gives a scale 

sample 

•  We can define a local warping from 
the source to the target image 

πC
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Full Pose from Single Keyframe 
Initial Estimates 

c

C

l
•  Every point on a line gives a scale 

sample 

•  We can define a local warping from 
the source to the target image 

•  Template search 

πC

n

H (s, πC) = R− s
tn!

d

f (s) = SM
(
S,H−1 (s, πC) (T )

)
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2
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Full Pose from Single Keyframe 
Initial Estimates - Overview 

… …
Keyframe 

Template Warped Templates from Target 

NCC -0.146 0.906 0.437 0.164 0.631 

Target Image 
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[12] Georgel et al. A Unified Approach Combining Photometric and Geometric Information for Pose Estimation. BMVC, 2008. 

Full Pose from Single Keyframe 
Nonlinear Refinement 

•  Sub-optimal solution 
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[12] Georgel et al. A Unified Approach Combining Photometric and Geometric Information for Pose Estimation. BMVC, 2008. 

Full Pose from Single Keyframe 
Nonlinear Refinement 

•  Sub-optimal solution 

•  We introduce a quadratic cost 
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[12] Georgel et al. A Unified Approach Combining Photometric and Geometric Information for Pose Estimation. BMVC, 2008. 

Full Pose from Single Keyframe 
Nonlinear Refinement 

•  Sub-optimal solution 

•  We introduce a quadratic cost 

•  Least square minimization 

  with     
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CG (Mi,R, t) =
n∑

i=1

+ ‖Ksw (Mi)− pi‖2

‖Ktw (RMi + t)− qi‖2
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Full Pose from Single Keyframe 
Algorithm Overview 

1. Estimate E 
2. Decompose E in R and t 
3. for each 2D-3D correspondences 

–  Find scale s 
4. end 
5. Select the scale s with best consensus 
6. Nonlinear estimation 

36 



Full Pose from Single Keyframe 
Synthetic Experiments 
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Full Pose from Single Keyframe 
Synthetic Experiments 
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Full Pose from Single Keyframe 
Synthetic Experiments 
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Full Pose from Single Keyframe 
Synthetic Experiments 
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Stable and precise results 
Non-linear refinement helps 
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[13] Georgel et al. An Industrial Augmented Reality Solution For Discrepancy Check. ISMAR, 2007. 

Discrepancy Check using Augmented Reality 
Keyframe Computation 

•  Landmark-based registration  
–  Register images to the CAD coordinate system 

•  Approach 
–  Extract landmarks (Anchor-Plates) from images 
–  Find corresponding 3D landmarks 
–  Compute the pose (Rotation, Translation) 

•  Information stored 
–  Image 
–  Full pose 
–  3D points:  location and normal. 
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[13] Georgel et al. An Industrial Augmented Reality Solution For Discrepancy Check. ISMAR, 2007. 

Discrepancy Check using Augmented Reality 
Results 
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Robust Features Matches and Propagated 2D-3D Correspondences 
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Discrepancy Check using Augmented Reality 
Results 
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Resulting Augmentation 
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Robust Features Matches and Propagated 2D-3D Correspondences 



[13] Georgel et al. An Industrial Augmented Reality Solution For Discrepancy Check. ISMAR, 2007. 

Discrepancy Check using Augmented Reality 
Results 
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Resulting Augmentation 



I did not do this work alone 
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Pierre Schroeder Selim Benhimane Juergen Sotke Stefan Hinterstoiser Stefan Holzer 



Conclusion and Perspectives 

About this method 
  Automatic full pose estimation 

  Perspectively corrected template 
matching 

  New non-linear cost function 
  Solution is used on site for inspection 

  Extension to more than two images 
  Non calibrated case 
  Estimation of the normals 

About the application 
  Landmark based registration 
  Automatic 6 DoF stereo registration 
  Bundle Adjustment with fix 3D points 
  3D Measurements 
  Inspection / Documentation  

  Mobile AR using keyframes 
  Guided 3D reconstruction 
  3D Annotations 
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Future Work 



Thank for the attention 

(Any)  Questions? 

http://wwwnavab.in.tum.de/Main/PierreGeorgel - Pierre.Georgel@gmail.com 
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