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•  Problem statement and application 

•  Software features 

•  Estimation of uncertainty localization for multi-scale local features. 

•  Outline of future work 
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Project Overview 

•  Discrepancy check between CAD data and built items 
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Project Overview 

•  Discrepancy check between CAD data and built items 

•  Project started in February 2006 

•  Consortium of CAMP – Siemens CT – Areva NP 

•  Yearly release - version 3.5 was ship last month 
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Photo-based Augmented Reality 

Single frame augmentation 
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Requirements 
1.   Registration 
2.   Interaction 



Landmark-based Registration  

•  Goal  
–  Register images to the CAD coordinate system 

•  Approach 
–  Extract landmarks (Anchor-Plates) from images 
–  Find corresponding 3D landmarks 
–  Compute the Pose (Rotation, Translation) 

•  Limitation 
–  Need of 2d visible Landmarks 
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Automatic 6 DoF Stereo Registration 

•  Goal  
–  Register images using a unique keyframe 

•  Approach 
–  Compute epipolar geometry using keypoints 
–  Extend the relative pose to a full pose using  

•  Planar structure 
•  2d-3d correspondences 

–  Non-linear estimation 
•  Bundle adjustment with planarity constraint 
•  Hybrid pose estimation that includes intensities 
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Propagated 2d-3d correspondences 

Extracted planar structure 

Georgel et. Al. ISMAR 2008, ISMAR 2009, (? WACV 2009)  



3D User Interface for an Augmented CAD Software 

•  New paradigm requires new interactions 
–  Extension of 2D zoom/pan interface to Mixed views 

–  Intuitive 3D image navigation 
•  No points track are required 
•  No Model is considered 
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Navigation Tools for Viewing Augmented CAD Models to appear in IEEE CGA Nov./Dec. 



Estimation and Exploitation of Localization 
Uncertainty for Scale Invariant Feature Points 

* Institute for Media Technology, see http://www.lmt.ei.tum.de 

Bernhard Zeisl,  
Florian Schweiger* 

Eckehard Steinbach* 
Nassir Navab 

BMVC 2009 

I stole these slides from Bernhard Zeisl 



1. Motivation 

2. Image Feature Detection and Related Work 

3. Uncertainty Estimation Framework and its Application 

4. Experiments 

5. Results for Model Fitting 
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Common assumptions for detected local features: 
  Accurately detected or same deviation in localization error (              ) 
  Does not hold for image detectors searching in scale space. 
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Introduction 
Motivation and Problem Statement 

Object detection and 
localization 

Object recognition and 
Image retrieval 

Wide baseline matching and 
3D reconstruction 

Local features are state-of-the-
art for a number of computer 

vision problems, e.g.: 
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Introduction 
Motivation and Problem Statement 

Our method: Estimation of individual localization error for each feature found 
parameterized by a covariance matrix. 

Repeated detection of same local feature 
under noise in the image: 



Purpose 
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Image Feature Detection 
Concept of Detector and Descriptor 

Approach 

Desired 
properties 

Localization of feature points Matching of feature points 

Spatial detection done via a 
mathematical operator 
e.g.: DoG, det(H), trace(H) 

Description by the structure of the 
local neighborhood 
e.g.: weighted sampling of 
gradient field 

  Stability – detection independent 
of changes in the image 
conditions 
 Measured in terms of repeatabi-
lity, i.e. 3D point detectable in 
two images capturing the same 
scene 

  Localization precision 

  Distinctiveness 
  Robustness to occlusions 
  Invariance to image 

transformations. 
Reached by appropriate size and 

sampling of the gradient field 

Detector Descriptor 

Purpose 
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Image Feature Detection 
Corners and blobs in an image are complementary features 

Harris corner detector MSER detector 

Examples 

Detector 

Location where two dominant 
directions intersect 

Areas brighter or darker than the 
surrounding. 

is sensitive to local regions which 
have a high degree of variation in 
all directions. 

localizes blobs by a well-defined 
point - the blob center. 

Feature definition 

Corner Detector Blob Detector 
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Related Work in Feature Detection 
In recent work blob detectors have found increasingly popular use 

  Harris (1988): Harris corner detector: 
Based on second moment matrix; 
measures the local change of the image. 

  Smith, Brady (1995): SUSAN: Based on the 
definition of corners using no image 
derivatives. 

  Mikolajczyk, Schmid (2002): Harris Laplace 
& Harris-Affine: Scale space adaption of 
the second moment matrix (representation 
as pyramid); the latter is also invariant to 
affine transformations. 

  Rosten, Drummond (2005): FAST, efficient 
implementation of SUSAN using decision 
trees; extensively used in SLAM. 

  Lowe (1999): SIFT (Scale invariant feature 
transform): DoG filter to search for features 
in scale space; Efficient implementation for 
descriptor matching. 

  Matas (2002): MSER (Maximally stable 
extremal regions): no scale space 
representation, but still scale invariant; 
detects blobs by subsequently thresholding 
the image. 

  Mikolajczyk, Schmid (2002): Hessian-
Affine: Similar to the Harris-Affine, but 
Hessian based detector finds blobs in an 
image. 

  Bay et. al. (2006): SURF (Speed up robust 
features): Hessian based detector; similar 
to SIFT, but fast implementation by usage 
of integral images and block filters. 

Corner Detectors Blob Detectors 
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Uncertainty Estimation Framework 
Inaccuracy is caused by pixel noise and the detection algorithm itself 

Noise in pixel intensity values results from 
the image capturing process. 
True feature point     is mapped to different 
points according to the noise distribution for 
each image taken from the scene.  

Feature point detection algorithms are based 
on the exploration of the local scene structure 
(1st or 2nd derivatives). 
 Additional error introduced for the feature 
point     depending on the algorithm. 

noise 
detection 

Pixel Intensity Noise Detection Algorithm 

3D ground truth point 

1.  Noise in captu-
ring process 

2.  Location inaccuracy 
in detection process 
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Related Work in Uncertainty Estimation 
Localization error addressed without scale-space consideration 

  Kanatani & Kanazawa (2001): 
Argue that meaningful covariance matrices can be computed 
from the self-matching residual, but no improvement for 
homography or fundamental matrix computation. 

  Brooks et. al. (2001): 
Curvature of self-matching residual for covariance estimation. 
Show performance gain for fundamental matrix computation. 

  Steel & Jaynes (2005): 
Argue that gradient based methods overestimate covariances. 
Derive covariances from different noise models for pixel 
intensities. 

  Haja et. al. (2008): 
Comparison of detectors with respect to localization accuracy. 
Localization accuracy evaluated in terms of matching precision. 

  Wu et. al. (2008): 
Observe relation between location precision and detection scale. 
Introduce less weighting for points at higher scales. 

Residual from template matching 
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Related Work in Uncertainty Estimation 
Localization error addressed without scale-space consideration 

  Kanatani & Kanazawa (2001): 
Argue that meaningful covariance matrices can be computed 
from the self-matching residual, but no improvement for 
homography or fundamental matrix computation. 

  Brooks et. al. (2001): 
Curvature of self-matching residual for covariance estimation. 
Show performance gain for fundamental matrix computation. 

  Steel & Jaynes (2005): 
Argue that gradient based methods overestimate covariances. 
Derive covariances from different noise models for pixel 
intensities. 

  Haja et. al. (2008): 
Comparison of detectors with respect to localization accuracy. 
Localization accuracy evaluated in terms of matching precision. 

  Wu et. al. (2008): 
Observe relation between location precision and detection scale. 
Introduce less weighting for points at higher scales. Observation of relation between scale 

and position 

Due to focus on scale 
invariant interest regions, 
we claim: 

1.  Shape of 
covariance will be 
in general 
anisotropic. 

2.  Magnitude will vary 
according to 
detection scale. 
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Scale Invariant Feature Detection 
The same feature can be detected at different scales 

Mikolajczky, , K., Schmid, C., Scale & Affine Invariant Interest Point Detectors, 2004 

Image / detector response stack 

Scale Space Representation Characteristic Scale Selection 
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  Scale space representation of the image 
with detection operator         . 

  Candidate set      of feature points             
by local maxima detection in               . 
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Scale Invariant Feature Detection 
A novel general formulation for feature detection in scale space 

Scale Space Representation 

Applicable for all detectors building upon a representation in scale space. 

  Scale space representation of the image 
with scale selection operator        . 

  Set      of feature points            by local 
maxima detection at positions     in 

Scale Selection 



Residual at feature point: 
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Uncertainty Evaluation Framework 
Covariance are estimated from the detector response curvature 

Covariance based on Hessian: 

low curvature  error due to the missing discriminative behavior of                in       . 
high curvature  detection process more accurate 



Detector function 
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Framework Application 
Application is identically for SIFT and SURF 

Covariance 
calculation 

SIFT SURF 

Scale calculation 

Back projection 

Detector function 
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Optimal Images for SIFT and SURF 
Image feature for maximal detector response are computable 

SIFT SURF 

DoG is a linear filter 
 matched filter approach 

Location and scale where feature will be detected is controllable. 

det(H) is non-linear detector: 
 Optimization via quadratically constrained quadratic 
program 
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Statistical Error Modeling 
Maximum likelihood estimate and our covariance coincide 

The covariance estimates fit the modeled error distribution 

(+) distribution of location error (--) covariance estimate (- -) maximum likelihood estimate 

Schweiger, F. et. al., Maximum Detector Response Markers for SIFT and SURF, VMV 2009  



25 

Covariance Dependence on Scale 
Feature points are localized better on smaller scales 

SIFT SURF 

Change of Frobenius norm over detection scale 
for feature points detected in real images. 

Feature points with small (              ) or large 
(           ) covariances. 

Blobs are worse localized than distinctive 
image points. 



High and low 
resolution images: 
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Covariance Dependence on Scale 
Quality of image has no influence on the localization accuracy 

SIFT SURF 

3072x2304 pixel 

800x600 pixel 

Covariances of matching feature points in the two images: 
(covariances are projected with the underlying homography) 

Covariances normalize the error function in an optimization and thus differently sized 
images can be used 

Corresponding feature points are detected at different scales; 
however particular feature shapes are equally sized 

 Localization error is similar in both images in relation to their size 



Tracking of a feature points in an image sequence and estimation of covariance matrix in each frame 
Test criteria: stability 
  expected outcome: smooth change of covariance according to viewpoint change between frames. 
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Covariance Dependence on Projective Transformations 
Projective distortions modify covariance shape and scale 

Zoom Perspective transform. 

Covariances are bigger the 
larger the feature is in the 

image 

Covariances are horizon-
tally compressed due to the 

perspective distortion 

Covariances follow the 
rotation of the pattern 

Rotation 



Bundle adjustment simultaneously 
refines the 3D coordinates describing 
the scene geometry as well as 
camera poses and intrinsic camera 
parameters. 
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Results for Model Fitting 
Bundle Adjustment 

Euclidian distance: 

Mahalanobis distance: 
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Bundle Adjustment 
Performance is evaluated with the reprojection error of corner points 

We get a performance improvement for the reconstruction with bundle adjustment 
using our feature point covariances. 

Reprojection error of 3D 
corner points: 

Mean performance as pixel offset for about 100 different image pairs 



I did not do this work alone 
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Adrien Bartoli (universite d’Auvergne) 
Bernard Ziesl 
Mirko Appel (siemens CT) 
Sumit Paranjape, Xinxing Feng, Xavier Fernandez, Hagen Kaiser 

Pierre Schroeder Selim Benhimane Juergen Sotke Stefan Hinterstoiser Stefan Holzer 



Conclusion and Perspectives 

About this method 
•  General formulation for feature detection 

in scale space 
•  Automatic computation of covariance 
•  Justification of correctness for the 

covariance estimates 
•  Performance improvement for bundle 

adjustment 

•  Further registration evaluation 
•  Comparison to methods for Harris 
•  Improvement for Matching? 

About the application 
•  Landmark based registration 
•  Automatic 6 DoF stereo registration 
•  Bundle Adjustment with fix 3D points 
•  3D Measurements 
•  Inspection / Documentation  

•  Scale stable corner? 
•  Mobile AR using keyframes 
•  Guided 3D reconstruction 
•  3D Annotations 
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Future Work 

Code and binaries for SIFT and SURF local feature detection and covariance estimation:  
http://campar.in.tum.de/Main/CovarianceEstimator 



Thank for the attention 

(Any)  Questions? 

http://wwwnavab.in.tum.de/Main/PierreGeorgel - Pierre.Georgel@gmail.com 
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