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Abstract

Image restoration deals with recovering the original scene from the raw data recorded by
a flawed optical device subject to systematic and random degradations. Modelled as a
(convolution-) integral equation, it belongs to the class of notoriously ill-posed inverse prob-
lems characterized by their pathologic sensitivity to perturbations in the data. Casting the
problem in an abstract framework of (robust) parameter estimation, we elaborate the theo-
retical background and discuss different regularization techniques. A selection of algorithms
is reviewed and adapted for microscopy. Finally, their performance is evaluated on sets of
both synthetically generated and real-world data.

Zusammenfassung

Ziel der im Englischen als ‘image restoration’ bezeichneten Disziplin ist die möglichst wir-
lichkeitsgetreue Rekonstruktion von Bildern aus dem Datensatz eines optischen Geräts, das
verschiedensten Beeinträchtigungen systematischer und zufälliger Natur unterworfen ist. Mo-
delliert als (Faltungs-) Integralgleichung gehört sie in mathematischer Hinsicht zur Klasse
der schlecht-gestellten inversen Probleme, die sich durch eine Überempfindlichkeit gegenüber
Störungen im Datensatz auszeichnen. Die Arbeit beleuchtet den theoretischen Hintergrund
aus der Perspektive sogenannter ‘robuster’ Parameter-Schätzung und behandelt verschiede-
ne Regularisierungstechniken. Eine Auswahl von Algorithmen wird ausführlich besprochen,
um sie dann speziell für den Anwendungsbereich der Mikroskopie zu adaptieren. Ihre Lei-
stungsfähigeit schließlich wird anhand von künstlich generierten wie echten Datensätzen eva-
luiert.
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CHAPTER 1. INTRODUCTION

1 Introduction

Empirical data are rarely exact. This is true, in particular, for imagery. Optical devices
are not perfect; the conditions under which they are put to use may be even less so. This
observation, rather trivial in itself, has motivated a field of research that undertakes to mend
the various effects of degradation — both systematic and random —, and to infer an estimate
as faithful as possible of the original scene.

Mathematically, image deconvolution is a prime example of linear inverse problems. While
the meaning of linearity is beyond dispute and requires no special elucidation, the very op-
posite is true for the second adjective. What determines the orientation of a problem and
occasionally earns it the label ‘inverse’ is not clear in the first place. With notions that
pertain to the realm of physical phenomena, we are told that inverse problems try to infer
the unknown ‘cause’ giving rise to the observed ‘effect’. While it is not difficult to match
this description with the particular case of image deconvolution, it falls short of providing
a rigorous definition. Clearly ‘cause’ and ‘effect’ are sound concepts within a framework of
physical phenomena, but tend to lose their meaning when transferred into abstract mathe-
matical language. In spite of its intuitivity, then, the classification may not be argued from a
strictly formalistic point of view.

Whence their status as a separate class of their own? — one might wonder. A superficial
assessment, indeed, will spot little difference to ordinary problems of parameter estimation.
And yet, recurring to otherwise well-tried methods like Maximum-Likelihood estimation is
ill-advised and bound to fail. Without anticipating an in-depth analysis to be conducted in
due course, it seems as if inverse problems were characterized by their pathologic sensitivity
to perturbations in the data — a property for which deterministic math has coined the
notion of ill-posedness with its generalization as condition number. Owing to the genuinely
probabilistic nature of the problem, however, we shall prefer a description in terms more
specifically pertinent to the field of estimation theory and use statistical concepts like variance,
bias, and mean-square-error performance instead. Although parallel explanations, very often,
coexist in either domain, this framework strikes us as both more powerful and elegant.

The thesis is organized as follows. The first part of the second chapter is dedicated to the
forward problem. The challenge, here, is to develop an adequate model of the image formation
process, sophisticated enough to capture all relevant aspects without forfeiting practicability
by an overly complex design. Simplifying assumptions — the better ones holding up to
scrutiny, others more precarious and with less backing from empirical observation — are
necessary to keep the problem commensurable in terms of computational cost. We review the
standard models prevailing in the literature and discuss alternatives where we see fit.

The second part of the chapter takes a closer look at the inverse problem and the difficulties
that inevitably arise from an ingenuous or naive approach. In order to motivate the subsequent
inquiry into possible alternatives, it will be demonstrated both analytically and experimentally
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CHAPTER 1. INTRODUCTION

why direct Maximum-Likelihood estimates, unless regularized by additional constraints, fail
to produce meaningful results.

Chapter three launches into a general discussion of regularization techniques — typically
one layer of abstraction underneath the concrete algorithm — to be used in what is commonly
referred to as ‘robust’ parameter estimation. Wherever possible without forcing the matter, we
have opted for a probabilistic perspective. Following a distinction that is rather philosophical
than technical we have divided the chapter into sections on traditional and more specifically
Bayesian approaches.

A selection of derived algorithms is presented and discussed in chapter four. The attempted
survey is a by no means complete, yet deliberately eclectic in the variety of approaches
considered. The algorithms, all of certain renown in their category, have been chosen so
as to give a reasonably broad overview, covering both direct and iterative approaches. The
comparably recent branch known as ‘blind’ deconvolution is represented by an EM-based
method.

Chapter five is concerned with adapting and customizing the acquired instrumentarium for
a given set of optical hardware at the Fraunhofer IIS Research Center, comprised of a light-
transmitting confocal microscope with attached CCD camera for digital recording. As most
of the best-performing algorithms to date do not fall into the blind category, their effective
use entails the supply of reliable a-priori information about the optical system. With the
relevant hardware at our disposition — an untypical situation, perhaps, and a privilege to
take advantage of — both impulse response and read-out noise will be subject to a careful
examination. In this context we derive a novel covariance estimator to be used for wide-sense-
stationary random processes and experimentally verify its predicted accuracy.

An evaluation of the results finally can be found in chapter six. The implemented algo-
rithms have been tested both on synthetic data — allowing a precise quantification of their
performance in terms of square error — and ‘authentic’ images with various degrees of out-
of-focus blur. In the former category, different levels of noise have been simulated, ranging
from ideal to worst-case conditions.
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CHAPTER 2. PROBLEM STATEMENT

2 Problem Statement

In this chapter we derive a mathematical model of the image formation process and lay the
groundwork for the subsequent formulation of the inverse problem. It is clear that restoration
can only succeed to the point where the model is a truthful representation of the underlying
physical process. On the other extreme, an over-sophisticated model is pointless if it cannot be
computed with reasonable effort. We will endeavor to hold a judicious balance here, striving
for as faithful a model as possible, while being considerate of the available resources and their
limits.

2.1 Forward Problem

As a first step toward modelling the degradation it makes sense to distinguish between de-
terministic and random components. Henceforth we will refer to the former as ’blur’ and to
the latter as ’noise’. Identifying the pristine image and its altered, degraded version with the
variables f and g respectively, we have

g = A(f)︸ ︷︷ ︸ + ν︸︷︷︸
blur noise

(2.1)

Although in practice no such representation will ever be available, the original scene may
be assumed to be a real-valued function f : R2 −→ [0, 1] with compact support Ω0 ⊂ R2.
Without loss of generality we will restrict ourselves to one-channel or greyscale images with
intensities normalized to the unit interval, where it is implicitly understood that color images
can be dealt with by processing each channel separately.

2.1.1 Blur-Model

In this section we review the standard model prevailing both in practical applications and
pertinent literature. Occasional deviations shall be discussed where we see fit.

Assumption 1: Linearity The vast majority falls into this category. Except for very special
applications, the few known exceptions have reported little, if any, improvement over linear
models. Without making a substantial difference, however, non-linear models can hardly
compete with their much less costlier counterparts of the linear category.

Let δx,y(ξ, η) := δ(ξ−x, η−y) for (x, y) ∈ R2 denote shifted instances of the two-dimensional
Dirac Impulse. Exploiting linearity, the blurred image f̃ := A(f) can be expressed as a
superposition integral of the form

f̃(x, y) =
∫ ∫

h(x, y, ξ, η) · f(ξ, η) dξ dη (2.2)
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where h(x, y, ξ, η) = 〈A(δξ,η), δx,y〉 and 〈 · , · 〉 the canonical inner product in L2. In practice,
all we have is an m by n grid of equally spaced samples, where m and n denote the number
of rows and columns respectively. Replacing the integrals in (2.2) by sums we obtain the
discrete approximation

f̃(x, y) =
m∑

ξ=1

n∑
η=1

h(x, y, ξ, η) · f(ξ, η) (2.3)

for 1 ≤ x ≤ m, 1 ≤ y ≤ n. The cumbersome book-keeping of multiple indices can be eluded
by using compact matrix-vector notation which is less prone to confusion. To this effect let
fk =

(
f(1, k), ..., f(m, k)

)T denote the vector containing the k’th column of f . By replacing
the outer sum in (2.3) we get

f̃y =
n∑

η=1

Ay,η · fη (2.4)

where

Ay,η = {h(x, y, ξ, η)}x,ξ=1...m ∈ Rm×m (2.5)

is the m by m square matrix formed by the kernel coefficients with fixed horizontal indices.
Likewise, by vertically stacking the n columns of the image, f can be economically represented
by one single vector f =

(
f1, ..., fn

)T ∈ Rmn. Proceeding in the same manner with the
remaining sum we find that

f̃ = Af (2.6)

with

A = {Ay,η}y,η=1...n ∈ Rmn×mn (2.7)

the block matrix composed of the n× n chunks previously defined in (2.5) with y, η running
independently from 1...n.

It will be noted that without further simplification the dimension of this matrix would be a
serious issue even for moderately sized images. With just under 69 billion components taking
up 256 GB of physical memory for a square image of 512 pixels length — provided we settle
for single precision! — it is not likely to fit into a customary desktop PC.

Assumption 2: Shift-Invariance A decisive simplification can be achieved by assuming that
the blur is spatially invariant, meaning that the projection of an impulse at location (ξ, η)
onto δx,y is a function of (2-dimensional) distance

h(x, y, ξ, η) = h(x− ξ, y − η) (2.8)

which makes (2.2) a convolution integral and A a block Toeplitz matrix with Toeplitz blocks
(BTTB). Indeed, by looking at (2.5) and (2.7) we find that both at the level of macro- and
microstructure elements are constant along the diagonals

Ai,j = {h(x− ξ, i− j)}x,ξ=1...m = Ai−j = Ak (2.9)

6



CHAPTER 2. PROBLEM STATEMENT

with k := i− j and likewise

Al(i, j) = h(i− j, l) =: a(k)
l (2.10)

Due to its particular structure, A is completely determined by (2n− 1) · (2m− 1) = 4mn−
2(n+m)+1 parameters, which make for a storage cost that is linear in the number of pixels,
as opposed to the quadratic behaviour of (2.7).

Assumption 3: Periodic Boundaries The assumption of shift-invariance falls short of pro-
viding an answer as to how boundaries should be dealt with. This question arises from the
following observation. The aforementioned free parameters can be thought of as weights in a
2m−1 by 2n−1 filter mask, just big enough to have it cover the whole image for any possible
alignment. It follows that roughly a quarter of the filter coefficients contribute for any given
pixel while the remaining ones map to intensities outside the area covered by the recording
system 

h−(m−1),−(n−1) h−(m−1),−(n−1) . . . h−(m−1),n−2 h−(m−1),n−1

h−(m−2),−(n−1)
. . . h−(m−1),n−1

...
...

hm−2,−(n−1)
. . . hm−2,n−1

hm−1,−(n−1) hm−1,−(n−2) . . . hm−1,n−2 hm−1,n−1


These masks, usually normalized with weights summing up to one, tend to have much smaller
support than the actual image. Typically filter coefficients have a peak at the anchor and
decay more or less rapidly toward the perimeter. Though the output is always a linear
combination of mn values, the number of ‘active’ non-zero weights may decrease significantly
as we approach the borders of the image, causing it to leak some of its energy there.

To mend this effect, the unavailable information usually is predicted according to one of
the following patterns

• periodic extension/wrap-around

f(−x, y) ≈ f(m− x, y) h−i,j = hm−i,j (2.11a)
f(x,−y) ≈ f(x, n− y) hi,−j = hi,n−j (2.11b)

• reflexive extension/axial symmetry

f(−x, y) ≈ f(x, y) h−i,j = hi,j (2.12a)
f(x,−y) ≈ f(x, y) hi,−j = hi,j (2.12b)

Obviously, each of the above heuristics — stated in this generality — is bound to find itself
at fault with reality, for most images of interest are neither periodic nor symmetric. Usually
they are just good enough to prevent the image from leaking too much of its energy at the
borders without introducing strong artefacts.

Opinions diverge as to how important boundary conditions are for the restoration. While
[26] maintains that the reflexive variant, on average, yields better results, superficial tests
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have not been able to confirm this and rather suggest that, especially for images of big or
moderate size, boundary condition have not a great impact on the result.

In the following we shall opt for periodic variant which has the advantage of being easy to
compute. Provided the filter mask does not exceed the size of the image, a linear convolution
may still be simulated by padding the image with an appropriately sized strip of zeros in
both dimensions. With the inclusion of boundary condition (2.11a) we may specialize the
BTTB-structure of A even further, by noting that the matrix is now block circulant

A =



A0 An−1 . . . A1

A1 A0 An−1
...

... A1 A0
. . .

...
...

. . . . . . An−1

An−1 A1 A0


∈ Rmn×mn (2.13)

with circulant blocks (BCCB)

Ak =



a
(0)
k a

(m−1)
k . . . a

(1)
k

a
(1)
k a

(0)
k a

(m−1)
k

...
... a

(1)
k a

(0)
k

. . .
...

...
. . . . . . a

(m−1)
k

a
(m−1)
k a

(1)
k a

(0)
k


∈ Rm×m (2.14)

This matrix, or any of its columns by which it is completely defined, sometimes is referred to
as point-spread-function (PSF). The actual shape of the PSF is determined by the mechanical
properties of the optical device or induced by other physical phenomena, such as

• Diffraction

• Atmospheric turbulence

• Out-of-focus blur

• Camera motion

• ...

As a detailed discussion of these phenomena is beyond the scope of this thesis, we refer the
interested reader to any of the numerous textbooks on optical physics.

2.1.2 Noise-Model

Unlike the pristine image, read-out noise, from the very outset, is a discrete phenomenon. It
can be modelled as a random process or — to emphasize that it unfolds in space rather than
time — as a random field.

Assumption 1: Gaussianity The statistical properties of the noise are device dependent. For
CCD cameras, which have been used for testing and evaluation, light intensities are known
to have a Poissonian distribution

gi = (Af)i + νi ∼ Po((Af)i) (2.15)
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Figure 2.1: Example of a Gaussian PSF

A discrete distribution, however, proves unwieldy for further analysis. Since E {X} = Var [X]
for a Poissonian random variable X, the model (2.15) can be approximated up to the second
(central) moment by letting

νi =
√

(Af)i ·X X ∼ N (0, 1) (2.16)

where the square-root is well-defined due to the non-negativity of light-intensities. The effect
of measurement errors can thus be modelled as additive Gaussian noise with (multivariate)
distribution

ν ∼ N (0,Φν) (2.17)

where the variance Φν is specified only up to the entries on the main diagonal by (2.16)

Φij =
{

(Af)i i = j
Cov (νi, νj) i 6= j

(2.18)

Note that ν is not stationary, which would require that Var [ν1] = Var [ν2] = ... = Var [νmn].
For any non-trivial combination of (A, f), however, this is unlikely to hold.

Assumption 2: Wide-Sense Stationarity (WSS) Although Poissonian models like (2.15)
and their approximation through non-stationary Gaussian processes (2.16) are current in
astronomical imaging — Richardson-Lucy being the most noteworthy example of this class
— they have not been able to prevail on a larger scale. The limited success of these models is
due, in part, to their comparably high complexity. Expensive processing — of minor relevance
in astronomical imagery, where it still relates favourably to the cost of collecting the data —
is often unproportionate or simply not affordable.

For the sake of simplicity, albeit against better knowledge, it has become de-facto standard
to model the noise as a wide-sense stationary (WSS) zero-mean Gaussian process, meaning
that

∀x, y : E {ν(x, y)} = 0 E {ν(x, y) · ν(x̂, ŷ)} = Rνν(x− x̂, y − ŷ) (2.19)

9
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This property induces a variance matrix that, again, is block Toeplitz

Φν =



C1 C2 . . . Cn

CT
2 C1 C2

...
... CT

2 C1
. . .

...
...

. . . . . . C2

CT
n CT

2 C1


∈ Rmn×mn (2.20)

with Toeplitz blocks

Ci =



ci,m ci,m+1 . . . ci,2m−1

ci,m−1 ci,m ci,m+1
...

... ci,m−1 ci,m
. . .

...
...

. . . . . . ci,m+1

ci,1 ci,m−1 ci,m


∈ Rm×m (2.21)

Note that due to the symmetry of the variance matrix, C1 = CT
1 and hence c1,2m−i = c1,i for

1 ≤ i ≤ m.

Assumption 3: Uncorrelatedness Even more restrictively, noise is sometimes assumed to
be uncorrelated

Rνν(x, y, x̂, ŷ) = σ2
ν δxx̂ δyŷ (2.22)

with σν the standard deviation of any one component which makes Φν = σ2
ν · In a scalar

multiple of the identity matrix. This case is often referred to as additive ‘white’ Gaussian
noise (AWGN), in analogy to the flat power spectrum of daylight, where all frequencies are
typically represented to an equal extent.

According to [26] algorithms based on Possionian noise distribution do not perform signifi-
cantly better in a large number of scenarios that typically arise in practice. Therefore, unless
specific knowledge suggests beforehand that these models will provide superior results, we
shall opt, by default, for the Gaussian variant ν ∼ N (0,Φν) with Φν BTTB and specialize in
the sense of (2.22) as we see fit.

2.2 Convolution Theorem

Due to its huge size, the matrix representation of A does not lend itself to actual computations
and is hardly ever constructed in practice. Fortunately, we find that linear systems involving
BCCB matrices are substantially less complex than matrix-vector algebra in general and can
be efficiently solved using discrete Fourier Transform. Such is, in quintessence, the finding
usually referred to as convolution theorem. Loosely formulated it states the equivalence of
the following operations

10
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Figure 2.2: Convolution with a Gaussian blur kernel

Discrete 1D [2D]-Convolution
m

Multiplication with [block-]circulant matrix [with circulant blocks]
m

Componentwise multiplication in the 1D [2D] Fourier-domain

where the parts in square brackets refer to the 2-dimensional case. We review the theorem
here in some detail both for its general importance in signal processing and the extensive use
we are going to make of it throughout the following sections.

Convolution Theorem. Let C =
∑m

k=1 ci · Rk−1 ∈ Rm×m be a circulant matrix, with
c = (c1, ..., cm)T = Ce1 its first column and Rm = (e2, ..., em, e1) ∈ Rm×m the downshift
operator. Let further Fm = { 1√

m
·ω(i−1)(j−1)

m }i,j=1,..m the one-dimensional DFT matrix, where

ωm = exp(−2πı/m) and ı =
√
−1 the imaginary unit. Then

FmCF
H
m = diag (FmCe1) (2.23)

Now let Fmn = Fn⊗Fm be the two-dimensional DFT matrix, ⊗ denoting Kronecker-product.
Then for a block-circulant matrix A =

∑n
k=1R

k−1 ⊗ Ck ∈ Rmn×mn with circulant blocks
Ck ∈ Rm×m it holds that

FmnAF
H
mn = diag (FmnAe1) (2.24)

Proof: As a first step in proving the theorem we show that the k’th column of FH
m is an

11
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eigenvector of R with corresponding eigenvalue ωk−1
m .

Rm(FH
m ek) = Rm · 1√

m


1

ω
∗(k−1)
m

...
ω
∗(k−1)(m−1)
m

 =
1√
m


ω
∗(k−1)(m−1)
m

1
...

ω
∗(k−1)(m−2)
m

 = ω(k−1)
m · FH

m ek

(2.25)

where the asterisk (∗) denotes complex conjugation. It follows immediately from (2.25) that

FmRmF
H
m = diag

(
1, ωm, ..., ω

m−1
m

)
(2.26)

Exploiting the representation of C as a polynomial in the downshift operator Rm, we find
that

FmCF
H
m = Fm

(
m∑

k=1

ck ·Rk−1
m

)
FH

m

=
m∑

k=1

ck · FmR
k−1
m FH

m

=
m∑

k=1

ck
(
FmRmF

H
m

)k−1

=
m∑

k=1

ck · diag
(
1, ωm, ..., ω

m−1
m

)k−1

= diag

(∑
k

ck,
∑

k

ckω
k−1
m , ...,

∑
k

ckω
(m−1)(k−1)
m

)
= diag (FmCe1)

(2.27)

It remains to verify the theorem for the 2-dimensional case. To resolve ambiguities, super-
scripts in parenthesis indicate the dimension of the canonical base vectors. Exploiting the
identities (A⊗B)H = AH ⊗BH and (A⊗B) · (C ⊗D) = (AC ⊗BD) we get

FmnAF
H
mn =

n∑
k=1

F
(
Rk−1

n ⊗ Ck

)
FH

=
n∑

k=1

(Fn ⊗ Fm)
(
Rk−1

n ⊗ Ck

) (
FH

n ⊗ FH
m

)
=

n∑
k=1

(
FnR

k−1
n ⊗ FmCk

) (
FH

n ⊗ FH
m

)

=
n∑

k=1

(
FnR

k−1
n FH

n

)
⊗
(
FmCkF

H
m

)
=

n∑
k=1

diag
(
FnR

k−1
n e

(n)
1

)
⊗ diag

(
FmCke

(m)
1

)

(2.28)
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which, by using diag (A)⊗ diag (B) = diag (A⊗B), may be reduced to the identity

FmnAF
H
mn =

n∑
k=1

diag
(
FnR

k−1
n e

(n)
1 ⊗ FmCke

(m)
1

)
=

n∑
k=1

diag
(
(Fn ⊗ Fm) · (Rk−1

n e
(n)
1 ⊗ Cke

(m)
1 )

)
= diag

(
(Fn ⊗ Fm) · (

n∑
k=1

Rk−1
n Ck) · (e

(m)
1 ⊗ e

(n)
1 )

)
= diag

(
FmnAe

(mn)
1

)
(2.29)

as claimed. �

The importance of the above theorem is not duly appreciated unless we consider imple-
mentational issues. From (2.24) it seems as if the O(n3), n = dim(C) operations required
by a convolution in the spatial domain were merely replaced by the DFT, without effectively
reducing the overall-complexity. Here the matrix-vector notation used for convenience is ob-
fuscating in the sense that it makes (2.24) look more expensive than it actually is. In practice,
we use recursive Fast Fourier Transform (FFT) which is O(n log n) and readily available in an
excellent and well-documented open source implementation as FFTW3. For details on this
issue, including a survey of different algorithmic approaches, see [20].

2.3 Inverse Problem

We consider the inverse problem within a probabilistic framework of parameter estimation.
Given the impulse response or blurring kernel and the observation g the goal is to find as
faithful an approximation of the pristine image f as possible.

In order to motivate the subsequent inquiry into so-called robust parameter estimation we
start by illustrating the problem arising from an ingenious, or at any rate, less sophisticated
approach. In particular it will be shown why otherwise well-tried methods, so long as they
do not take into account the particular nature of the problem, are bound to fail.

Maximum Likelihood Estimator and Pseudo Inverse Perhaps the most intuitive way to go
about constructing an estimator is the Maximum-Likelihood principle. Suppose the noise is
Gaussian with known distribution

ν ∼ N (µν ,Φ) (2.30)

All probabilities involved being strictly positive, the conditional log-likelihood is well-defined
and given by

log p(g|f) = c− (g −Af − µν)T Φ−1(g −Af − µν)
2

(2.31)

where c = − log|2πΦ|/2 is a constant independent of f . Consider first the special case of
white zero-mean noise with standard deviation σν for any one component

µν = 0 Φ = σ2
νI (2.32)

13
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Then the second term on the right-hand-side of (2.31) represents simply the 2-norm of the
residual, scaled by a strictly positive factor σ−2 > 0. Finding the maximizer of (2.31) with
respect to f thus is equivalent with the least squares problem (LS)

arg max log(g|f) = arg min ‖g −Af‖2 (2.33)

whose well-known solution

f̂ML = A†g (2.34)

defines the unbiased ML-estimator for f . Depending on whether A ∈ Rm×n is over- or
underdetermined, an explicit representation of the pseudo-inverse is given by

A† =

{
(ATA)−1AT m ≥ n

AT (AAT )−1 m ≤ n
(2.35)

Using Choleski-Factorization for positive definite matrices, the general case may be reduced
to (2.32) by the following change of variables

ĝ = Φ−1/2(g − µν) Â = Φ−1/2A (2.36)

Premultiplying the variables with Φ−1/2 acts as a prewhitening filter and effectively decor-
relates the noise. Transforming (2.30) in this way eventually yields the Generalized Least
Squares (GLS) problem

f̂ML = Â†ĝ = (AT Φ−1A)−1AT Φ−1g (2.37)

for m ≥ n.

Without loss of generality we shall henceforth consider only the case of uncorrelated zero-
mean Gaussian noise

ν ∼ N (0, σ2
νI) (2.38)

where it is implicitly understood that the general case (2.30) can be reduced to this form
by changing the variables as in (2.36). For the time being, we conclude that for normally
distributed noise Maximum Likelihood (ML) estimation is conceptually equivalent to (Gen-
eralized) Least Squares.

Maximum-Likelihood (ML) estimation
m

Generalized Least Squares (GLS)

Singular Value Decomposition Sometimes it is convenient to express the Pseudo-Inverse in
terms of Singular Value Decomposition (SVD), without having to discriminate between over-
and underdetermined case. Let

A = USV H (2.39)

14
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with U ∈ Cm×m and V ∈ Cn×n unitary matrices, S = diag (σ1, ..., σr, 0, ...) ∈ Rm×n the
diagonal matrix of singular values, conventionally arranged in decreasing order such that

σ1 ≥ σ2 ≥ ... ≥ σr > 0 (2.40)

and r = rank(A) ≤ min(m,n). Define S−1 := diag
(
σ−1

1 , ..., σ−1
r , 0, ...

)
∈ Rn×m the matrix

obtained by transposal of S and inversion of non-zero entries on the main diagonal. Then

A†g = V S−1UHg (2.41)

is sometimes referred to as principal solution. Writing out (2.41) as a sum we find that,
equivalently

A†g =
r∑

i=1

vi
〈ui, g〉
σi

(2.42)

where the subscripted lowercase letters ui and vi refer to the left and right singular vectors
which comprise the columns of U and V respectively.

Error Analysis It is common to assess the goodness of an estimator f̂ in terms of its Mean
(Integrated) Square Error (MISE), defined as

MISE
[
f̂
]

= E
{∥∥∥f − f̂

∥∥∥2

2

∣∣∣ f} (2.43)

Of all unbiased estimators, the Maximum Likelihood-estimate (2.34) and its generalization
for arbitrary variance matrices (2.37) may be shown to be optimal in the sense of (2.43)

f̂ML = arg min
{f̂ |E{f̂}=f}

MISE
[
f̂
]

(2.44)

which makes it also the Best Linear Unbiased Estimator (BLUE).

Although unbiased, the Maximum Likelihood estimator turns out to be a poor choice for
its variance and mean square error performance. What the label ’Best Linear Unbiased’ is
actually worth can be seen in figure 2.3. It represents the estimate obtained by straight
inversion of the same square PSF-matrix previously used to blur the image without adding
a whatsoever small amount of noise. Due to its huge size, the system of linear equations has
been solved using Fast-Fourier-Transform (FFT) by application of the convolution theorem
(2.24). Those who suspect this particular method to be instable and would like to hold
it responsible for the disastrous result 2.3, will recall that the DFT is numerically as well-
behaved as can be (with condition number κ = 1 for orthogonal transforms). The only noise
then, if such we want to call it, is introduced by inevitable rounding errors in the order of
machine precision ε ≈ 10−16 for 64-bit IEEE floating point numbers. The real issue, let us
be clear about it, is the system itself, rather than a particular way of solving it. Looking at
(2.42) should give a good idea of what can go wrong. For although σi 6= 0, its absolute value
can be arbitrarily small. So long as the data are not corrupted by noise, dividing by this
quantity is innocuous, for any contribution of this subspace in the original image has been
obliterated by the forward mapping, so that division and previous scaling cancel

〈vi, g〉
σi

=
〈vi, Af〉+ 〈vi, ν〉

σi
= 〈vi, f〉+

〈vi, ν〉
σi

(2.45)
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Figure 2.3: Maximum Likelihood Estimate and BLUE

In the presence of noise, however, we see that (2.45) is largely dominated by the second term
for singular values with small magnitude σi ≈ 0. However moderate the level of noise, it will
end up hugely amplified in the corresponding subspaces of the restored inverse, introducing
artefacts that usually distort it beyond recognition. The estimate, then, will not be anywhere
close to the pristine image and void of any real meaning.

This pathological sensitivity to small perturbations in the data can be formalized by ana-
lyzing the error performance of the estimator according to (2.43). Using that for a zero-mean
random variable X ∈ Rn

E
{
‖X‖22

}
= E

{
n∑

i=1

X2
i

}
=

n∑
i=1

Var [Xi] = trace (Var [X]) (2.46)

holds and letting A = USV H as in (2.39) we find that the mean (integrated) square error of
the Maximum Likelihood estimator is given by

E
{∥∥∥f −A†g

∥∥∥2

2
| f
}

= E
{∥∥V S−1UHν

∥∥2

2

}
= σ2

ν trace
(
S−2

) (2.47)

and hence

MISE
[
f̂ML

]
= σ2

ν

r∑
i=1

1
σ2

i

≈ ∞ (2.48)

for small singular values σi ≈ 0.

Unfortunately, we have to reckon with singular values close to zero, not accidentally but as
a necessary consequence of A being a bounded linear operator. The spectrum (σ1, ..., σr) of A
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which coincides with basically the Fourier Transform of the PSF, is also refered to as Optical
Transfer Function (OTF) and characterizes its response to different frequencies. Though
OTFs are device specific and vary accordingly, they typically exhibit a more or less rapid
decay of magnitude toward high frequency components which is indicative of a poor or, at
any rate, limited resolution capacity of the device.

Examples of this phenomenon are manifold. Consider, for instance, that the Fourier-
Transform of a Gaussian

f(x) = e−x2/(2σ2) FT
←→ F (ω) =

√
2πσeω

2σ2/2 (2.49)

is another Gaussian with variance antiproportional to that of the former. In other words, the
larger the spread in the PSF, the faster will be the decay in the magnitudes of the spectrum
toward high frequencies, leading to the critical situation described above.

Figure 2.4: OTF of a diffraction limited microscope (Airy disk)

Having identified the extreme volatility of the unbiased estimator as its critical flaw, we
shall now explore ways to make it more ‘robust’.

17
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3 Robust Parameter Estimation

Estimates obtained by straight inversion of the blur-operator have been shown to be useless
because of their enormous sensitivity to noise. They will exhibit wild oscillations — both
in the sense that high (spatial) frequency components dominate in the reconstructed image
as well as in the sense of arbitrarily disparate solutions, should the experiment be repeated
several times. As a straight inversion will almost certainly fail to yield a meaningful solution
to the problem, other approaches have to be considered.

In order to obtain a more regular estimate, conjectures have to make up for what is missing
in the data. In other words, we exploit what we know — or believe to know — about the
pristine image independent of the data and even before any measurements are made. This is
not as forlorn as it may seem at first sight. The image — by all reason — will exhibit features
of some spatial extension; regions of interest will typically stretch out over many pixels. The
contrary is very unlikely at best and may be dismissed on the grounds that otherwise the
resolution would be inappropriate to capture relevant information anyway. Notwithstanding
singularities (edges and regions of sharp contrast in the image), it seems reasonable to expect a
minimum of correlation among the pixels, typically more pronounced for immediate neighbors
and roughly decaying as a function of their distance. In other words, smoothness and stability
are distinguishing properties of a plausible solution. ’Most’ elements — whatever that means
for an incountably infinite set — contained in {f : R2 −→ [0, 1]} can be ruled out as violating
those constraints.

In this chapter we consider different ways to make the estimator prefer solutions which
are deemed more plausible than others. The structure is bipartite, following a distinction
that is much rather philosophical than practical. As for concrete recipes, there may be
little difference, indeed; being derived from a distinct theoretical framework in either case,
however, we shall treat Bayesian and Non-Bayesian techniques separately. While the latter
ones (spectral filters, for their majority) remain consistent with the setting of conventional
parameter estimation — all they do, in quintessence, is trade variance for bias — Bayesian
techniques require a recast of the whole problem. Their remarkable flexibility, extending
beyond the subset of linear problems, stems from the fact that the parameter to be estimated
is itself changed into a random variable obeying a distribution known as prior probability.
Both approaches have a long history of successful application to inverse problems.

Literature and online material pertinent to this subject is prolific; most recent and com-
prehensive publications include [25] and [17].

3.1 Non-Bayesian Regularization

Idea Clearly, an ideal estimator would combine the best of all possible worlds and join a
small variance to a zero bias. In reality, however, even the best unbiased estimator has been
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shown to possess a variance exceeding all reasonable bounds. To comprehend how either of
the those quantities contributes to the mean (integrated) square error, consider that

MISE
[
f̂
]

= E
{∥∥∥f − E

{
f̂
}

+ E
{
f̂
}
− f̂

∥∥∥2

2

∣∣∣ f}
=
∥∥∥Bias

[
f̂
]∥∥∥2

2
+ trace

(
Var

[
f̂
]) (3.1)

According to (3.1) constructing a well-performing estimator is equivalent to minimizing the
sum of the above terms. One may go about this task using the following heuristic. Starting
with the Maximum Likelihood estimator for which∥∥∥Bias

[
f̂ML

]∥∥∥2

2
= 0 trace

(
Var

[
f̂ML

])
≈ ∞ (3.2)

the idea is to move along an appropriately parameterized trade-off curve away from zero-bias
toward smaller variance. In other words, we accept a systematic error to achieve greater
stability in turn. Such is, summarized in one sentence, the deal underlying non-Bayesian
regularization techniques.

3.1.1 Spectral Filters

One way to parameterize the trade-off curve is to apply a filter that operates on the spectrum
of A. Let A = USV H the SVD as in (2.39). Letting α denote the amount of regularization
we wish to inflict upon the solution, the resulting estimate is given by

f̂α = V RαS
−1UHg (3.3)

with Rα the diagonal matrix of filter coefficients

Rα =

 rα(σ1) 0
. . .

0 rα(σn)

 (3.4)

and rα : [0,∞] −→ [0, 1] appropriately. Basically, this may be any function satisfying

r0(σ) = 1 lim
α→∞

rα(σ)
σ

= 0 (3.5)

Otherwise its design is somewhat arbitrary. Two of the most commonly used filter functions
are

rα(σ) =


1(σ2>α) Truncated SVD (’Spectral-Cut-Off’)

σ2

σ2 + α
Ridge Regression (Tikhonov-Regularization)

(3.6)

To our knowledge there is no real difference between Ridge Regression and Tikhonov Regu-
larization other than, perhaps, their pertinence to different theoretical frameworks — prob-
abilistic the former, deterministic the latter. As far as we can see it’s merely two names for
the same thing.
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The effect of spectral filters is to dampen or completely obliterate contributions of sub-
spaces associated with small singular values, while those characterized by a sound signal-
to-noise-ratio (SNR) and well-determined by the data pass virtually unaltered. Unlike the
plain thresholding of spectral cut-off — also known as Truncated Singular Value Decompo-
sition (TSVD) — the Tikhonov filter function smoothly interpolates between the boundary
constraints 0 and 1 (see the graph in figure 3.1).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10−610−8

Singular value σ

Tikhonov Filter Function

α = 10−15

α = 10−14

α = 10−13

Figure 3.1: Tikhonov Filter Function for different values of α

Error Analysis It will be noted that the resulting estimator f̂α has bias∥∥∥Bias
[
f̂α

]∥∥∥2

2
=
∥∥V (I −Rα)V Hf

∥∥2

2

≤ ‖f‖22 max
1≤i≤r

(1− rα(σi))2
(3.7)

As for the other quantity on the right-hand-side of (3.1) it holds that

trace
(
Var

[
f̂α

])
= σ2

ν trace
(
(RS−1)2

)
≤ σ2

ν n max
1≤i≤r

(rα(σi)
σi

)2 (3.8)

Using properties (3.5), we see that the regularized solution interpolates between the
Maximum-Likelihood estimate (obtained as a special case of (3.3) by letting α = 0) and
the uniformly ’black’ image of zero-intensities

lim
α→∞

∥∥∥Bias
[
f̂α

]∥∥∥2

2
= ‖f‖22 lim

α→∞
trace

(
Var

[
f̂α

])
= 0 (3.9)

To see that the regularized solution effectively makes for a better estimate, consider the ex-
ample of Ridge Regression. By substituting into (2.43) and using that the 2-norm is invariant
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under orthogonal transform, we find that

MISE
[
f̂α

]
=

r∑
i=1

( σ2
i

σ2
i + α

− 1
)2

+ σ2
ν

r∑
i=1

(
σ2

i

σ2
i + α

1
σi

)2

=
r∑

i=1

σ2
νσ

2
i − α2〈vi, f〉
(σ2

i + α)2

(3.10)

Differentiating with respect to α yields

∂

∂α
MISE

[
f̂α

]
= −2

r∑
i=1

ασ2
i 〈vi, f〉+ σ2

νσ
2
i

(σ2
i + α)3

< 0 (3.11)

for α nearby zero. Hence moving along the trade-off curve away from the extremely volatile
estimate at α = 0 effectively reduces the mean square error.

Consistency and Convergence Rate Either of the above filter functions, by the way, can
be shown to satisfy the inequality rα(σi)/σi ≤ α−1/2. Now let α = σp

ν for some p ∈ (0, 2) and
suppose the noise level can be made arbitrarily small. Considering the asymptotic behaviour
of the resulting estimator as σν → 0, we find that

0 ≤ MISE
[
f̂
]
≤ max

1≤i≤n
(1− rα(σi))2 ‖f‖22 + nσ2

ν α
−1

= O(σp
ν) +O(σ(2−p)

ν )
(3.12)

where the Landau-symbol is used in its conventional acceptation as g = O(h) ⇔
lim suph→0|g/h| ≤ c ∈ R (‘Big Oh notation’). Then for 0 < p < 2

lim
σν→0

MISE
[
f̂
]

= 0 (3.13)

Evidently this requires that the variance of the noise be known beforehand, which is rarely
the case. A filter function together with a parameter-rule that ensures asymptotic behaviour
as in (3.13) is called consistent. A lot of research has been dedicated to quantify the rate of
convergence achieved under certain conditions, see e.g. [27], [5], [11] and [3].

3.1.2 Parameter Rules

Equation (3.13) is unrealistic, not only in the sense that the noise level cannot be made
arbitrarily small; in reality we are not even likely to know its variance; for hardly any real-
world problem ever comes with such detailed information. To get better idea where on the
trade-off curve to look for the optimal estimate, parameter rules are a valuable guideline.
They can be grouped into the following two categories

• a-priori rules, assuming precise knowledge of the signal-to-noise ratio

• a-posteriori rules, based exclusively on the available data

One of the more successful techniques that falls into the latter class is called (General) Cross-
Validation, where the adjective refers to its isotropic variant.

22



CHAPTER 3. ROBUST PARAMETER ESTIMATION

3.1.2.1 Generalized Cross Validation (GCV)

The idea of cross-validation originally was developed by Grace Whaba [28] for underdeter-
mined linear systems as arising in spline-smoothing. While it is clear that constructing a curve,
and hence a continuous object, from a necessarily finite set of samples (x1, y1), ..., (xm, ym) is
ill-posed and requires a reasonable amount of regularization, the optimal choice of α is less
so and remains to be determined. Given this particular background, we note that the paper
deals with problems of the form

y = Ax+ ν (3.14)

where A is a discrete×continous matrix. We follow the paper in that we stick with the
underdetermined case, at least initially, while translating it to finite dimensional spaces for
simplicity.

In the course of derivation we shall need the following lemma, which we review here for
completeness.

Inverse of a block-partitioned Matrix. Let P ∈ R(m+n)×(m+n) invertible, partitioned in
blocks A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m and D ∈ Rn×n with |D| 6= 0. Let further

E1 =
(

I 0
−D−1B D−1

)
E2 =

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

0 I

)
(3.15)

be elementary block-matrices. Then the inverse is given by (column-wise GE)(
A B
C D

)
︸ ︷︷ ︸ ·

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
︸ ︷︷ ︸ = I

P E1E2 = P−1

Derivation Let A ∈ Rm×n with m < n a matrix of maximal rank and y = (y1, ..., ym)T the
data vector. Then the regularized pseudo inverse is given by

x†α = arg min ‖Ax− y‖2 + α ‖x‖2 (3.16)

Now suppose you eliminate one single datum (xk, yk) from the set of measurements. For this
purpose let Ak denote the matrix obtained by deleting the k’th row in A and likewise for
vectors. The regularized estimate obtained by the reduced data

x†k,α : = arg min ‖Akx− yk‖2 + α ‖x‖2 (3.17)

may then be assessed by comparing the predicted value at xk with the actual measurement
yk. If we let aT

k = eTkA denote the k’th row of A, we can define

rk,α := aT
k x
†
k,α − yk (3.18)

to be the residual at sample k for parameter α. This proceeding is sometimes referred to
as leave-out-one prediction. Effectively it amounts to splitting the data in two parts, the
first of which is used to actually construct the solution that is being validated, subsequently,
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against the latter one. The roles, of course, are completely arbitrary and therefore reversible.
From this symmetry one quickly arrives at the idea of Cross-Validation, where each datum
is singled out in turn to be validated against the remainder in the aforementioned way. We
define the optimal parameter α̂ ∈ (0,∞) to be the minimizer of the CV-function, defined as
the square sum of the residuals

CV (α ) =
1
m

m∑
k=1

r2k,α (3.19)

A good solution — obtained as a function of the regularization parameter — should be
able to predict new measurement points fairly well. In other words, adding or omitting a
single datum should not result in a dramatic change of the trajectory, nor should the desired
stability go to the detriment of an accurate approximation by making the trajectory lie far
off the sample points. In either case we would pay a high penalty in terms of a large Cross-
Validation residual. Minimizing the CV-function thus effectively results in a solution ‘just
smooth enough’ by adjudicating an optimal compromise between stability and accuracy.

While equations (3.18) and (3.19) best render the idea of Cross-Validation on the conceptual
level, they are impractical for computation. In fact, evaluating the CV function as above would
entail the solution of m linear systems, each of nearly the same size as the actual problem
(3.14) — a cost clearly unproportional for the mere identification of a secondary parameter,
important as it may be. However, it turns out that the computation can be greatly simplified
by some basic observations.

First of all, note that in the underdetermined case presently discussed

x†k,α = AT
k (AkA

T
k + αIm−1)−1yk (3.20)

Now let Q = AAT and M = Q+ αIm for notational convenience and consider the case k = 1
By partitioning the matrices as follows aT

1

A1


︸ ︷︷ ︸

·

 a1 AT
1


︸ ︷︷ ︸

=

 q11 qT
21

q21 Q22


︸ ︷︷ ︸

A AT Q

(3.21)

we see that

A1A
T
1 = Q22

A1A
T
1 + αIm−1 = M22

aT
1A

T
1 = qT

21 = mT
21

(3.22)

Using the identities (3.22) we find that the residual at the first sample point for a given
parameter α is

r1,α = aT
1A1(A1A

T
1 + αIm−1)−1y1 − y1

= mT
21M

−1
22 y1 − y1

(3.23)

24



CHAPTER 3. ROBUST PARAMETER ESTIMATION

Now set T := M−1 partitioned as above. Then according to the lemma it holds that −t−1
11 t

T
21 =

mT
21M

−1
22 , for t11 6= 0. Substituting into (3.23) yields

r1,α = −t−1
11 t

T
12y1 − y1

= −t−1
11

(
eT1 Ty − t11y1

)
− y1

= −t−1
11 e

T
1 Ty

(3.24)

We shall now consider the case where k 6= 1. To this effect let

P := (eTk , ..., e
T
m, e

T
1 , ..., e

T
k−1) ∈ Rm×n (3.25)

be the (circular) shift operator, composed by row-wise stacking of the canonical base vectors
in Rn. By orthonormal transformation of the variables

Ã := PA Q̃ := ÃÃT = PQP T

ỹ := Py T̃ := (Q̃+ αIm)−1 = PTP T

and exploiting the identities Ak = Ã1, yk = ỹ1 we find that

rk,α = ãT
1 Ã1(Ã1Ã

T
1 + αIm−1)−1ỹ1 − ỹ1

= −t̃−1
11 · e

T
1 T̃ ỹ

= −(eT1 PTP
T e1)−1 · eT1 PTP T ỹ

= −t−1
kk · e

T
k Ty

(3.26)

Putting together (3.24) and (3.26) we thus have

rk,α = −
[
(Q+ αIm)−1y

]
k
/
[
(Q+ αIm)−1

]
kk

(3.27)

for 1 ≤ k ≤ m. Now let C := QT , then

I − C = I −Q(Q+ αIm)−1

=
(
(Q+ αIm)−Q

)(
Q+ αIm

)−1

= α · (Q+ αIm)−1

(3.28)

and therefore rk,α = [(I − C)y]k / [I − C]kk. Note further that Cy = Ax†α and hence

CV(α ) =
1
m

m∑
k=1

(y −Ax†α)2k
(1− ckk)2

(3.29)

with C = {cij}ij depending on α which is not emphasized in (3.29).

Certainly the above shortcut is more suitable for practical implementation; yet, without
restrictive assumptions like shift-invariance, computing trace(C) may still be difficult for
problems of very large scale. (See [8] for a possible remedies)

Equation (3.29) identifies the CV function as a weighted Euclidean norm. Note, however,
that while summing over the terms in either the numerator or denominator separately is
invariant under orthogonal transform the sum of their componentwise ratio is not. A simple
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rotation of the problem thus most likely results in a different minimizer, which is an unpleasant
property, after all.

This observation has motivated a variant of CV that keeps its minimum under orthogonal
transform, called Generalized Cross Validation (GCV). To this effect, the diagonal elements
of I − C in the denominator of (3.29) are simply replaced by their average trace(I − C)/m
which effectively corresponds to a weighted sum of the residuals

GCV(α ) =
1
m

m∑
k=1

r2k,αwk (3.30)

with weights

wk =

[
(AAT + αIm)−1

]2
kk[

1
m trace

(
(AAT + αIm)−1

)]2 (3.31)

By modifying (3.29) in this sense we finally obtain a compact and computationally efficent
representation of the GCV function as follows

GCV(α ) = m ·

∥∥∥y −Ax†α

∥∥∥2

2

trace(I − Cα)2
(3.32)

Sometimes the dimensionality factor m is dropped in (3.32), being irrelevant for the mini-
mization problem. We recall that Cα = AAT (AAT + αIm)−1 for the underdetermined case
presently discussed, but it is not difficult to show that the above equations hold true as well
for the overdetermined case, if we let C = AT (ATA+ αIm)−1AT .

A particularly useful representation of the GCV function can be obtained by spectral fac-
torization of the matrix A. Thus let A = USV H the SVD, with singular values σ1, ..., σm and
left singular vectors u1, ..., um the columns of U . Then

GCV(α ) = m ·
m∑

k=1

(
|〈ui, y〉|
σ2

i + α

)2 / m∑
k=1

(
1

σ2
i + α

)2

(3.33)

can be minimized using standard optimization techniques. Figure 3.2 shows the generalized
cross-validation function for the testimage 2.2 blurred with a Gaussian kernel in the presence
of additive white Gaussian noise (AWGN). (The eigenvalues defining the Optical Transfer
Function were σx,y = exp(−θr5/3) with r =

√
x2 + y2 the radius of frequency and θ = 0.005).

The GCV-function assumes its minimum at α0 = 3.237 × 10−7. Figure 3.5 on page 36
represents a sequence of restored images for varying α obtained by stepping through an
interval around the numerically determined minimizer of (3.32). In agreement with the GCV-
criterion, solutions for α < α0 strike the beholder as too rough, while choosing α > α0 results
in an oversmoothed estimate and significant loss of detail. If one were to choose ’by eye’,
based exclusively on the visual impression, most would probably pick the image on the right-
hand-side in the middle row which is fact the solution for α = α0. So far we have argued on a
purely heuristic level without a strict definition of optimality — and all the less a formal proof.
As an in-depth discussion is beyond the scope of this paper, we leave it at the statement that
under certain, not too restrictive, conditions

lim
m→∞

E {GCV(α)} = E
{

1
m

∥∥∥Ax−Ax†α

∥∥∥2

2

}
(3.34)
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Figure 3.2: Generalized Cross Validation (GCV) function

The claim for goodness, then, is based on the asymptotic convergence to the mean square true
prediction error given by the right-hand-side of (3.34). For details and proof the interested
reader is referred to the aforementioned paper by Whaba.

3.1.2.2 L-Curve

Another technique to predict the optimal regularization parameter is named after the typical
shape of the trade-off curve between bias and variance — or between residual and solution
norm, for that matter. Figure 3.3 shows a logscale plot of ‖g −Af‖2 versus ‖f‖2 evoquative
of the capital letter ‘L’, each sample point representing a solution for a different value of α.
Again the experiment has been conducted with the same test-image 2.2 as in the part on
GCV (Gaussian OTF, AWGN with σ = 3). According to this heuristic the optimal choice
for the parameter α would be at the corner or ’knee’ of the ‘L’. Translating this informal
description into mathematical language it has been suggested by [10] to look for a maximum
in the second derivative of the parameterized graph, which characterizes the point of greatest
curvature. This particular method has not been extensively tested but it seems as if there
was an inherent tendency toward overly smooth estimates by predicting a greater value for
α than necessary. For an in-depth discussion and possible alternatives see, again, [10] and
[9]. Figure 3.4 shows, once more but this time in parallel, residual and solution norm as a
function of the regularization parameter.
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Figure 3.4: Residual and solution norm, varying with the regularization parameter

3.1.3 Generalized Tikhonov Regularization

Classical Tikhonov Regularization, as presented in (3.6), is susceptible of an important gen-
eralization that readily extends beyond spectral filters. To this effect it is useful to recast it
first as an optimization problem. In fact, the Tikhonov estimate

f (Tv)
α = V RαS

−1UHg Rα = (S2 + αI)−1S2 (3.35)
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can be shown to be the minimizer of

φ(f) = ϕd(f) + αϕm(f) (3.36)

where ϕd and ϕm are cost-functionals representing data misfit and model norm respectively

ϕd(f) = ‖g −Af‖2 ϕm(f) = ‖f‖2 (3.37)

To see that f (Tv)
α = arg minf φ(f) we differentiate (3.36) with respect to f and set

0 = ∇fφ(f̂) = 2
(
(AHA+ αI)f̂ −AHg

)
(3.38)

which leads to the modified system of normal equations (AHA + αI)f̂ = AHg. Using the
SVD representation we can solve for the minimizer f̂ and get(

V S2V H + αI
)
f̂ = V SHUHg

V
(
S2 + αI

)
V H f̂ = V S2S−1UHg

f̂ = V
(
S2 + αI

)−1
S2S−1UHg

(3.39)

as claimed. Thus Tikhonov Regularization has been shown to be equivalent with minimizing
a weighted linear combination of two cost- or penalty-functionals. While the misfit ϕd is
an objective criterion ensuring a minimum of consistency with the observed data, ϕm is less
so. Reflecting our conjectures about a plausible solution, it is supposed to penalize ‘rough’
estimates with high energy. An obvious way to generalize this pattern is by letting

ϕm(f) = ‖f − f0‖L (3.40)

with ‖ · ‖L = ‖L( · )‖2 for a linear map L defining a (semi-)norm on the domain space and
f0 ∈ Rn a default solution. Note that the classical variant (3.35) is obtained as a special case
by letting (L, f0) = (I, 0). So long as L is square and invertible, the general case (3.40) may
reduced to the standard form (3.35) by the following change of variables

A′ := AL−1

g′ := g +Af0

f ′ := L(f − f0)
(3.41)

After solving for the minimizer of the transformed problem, say, f̂ ′, the solution to the original
problem is readily obtained by computing f̂ = L−1(f̂ ′ + f0).

Some difficulties arise, however, when L is underdetermined. A prominent example of this
case is so-called k’th order regularization, where L is a discrete approximation of the derivative
operator. For one-dimensional data this will most likely be a finite difference matrix of the
corresponding order, like

D(1)
n =


1 −1

1 −1
. . . . . .

1 −1

 , D(2)
n =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
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etc, or any linear combination we see fit. The pattern naturally extends to higher orders and
is rendered by the following line of Matlab pseudo-code

%% construct finite difference matrix of order k
%% and dimension (n-k) x n
D(n,k) = eye(n-k, k) * (eye(n) - circshift(eye(n), [0, 1]))^k

Effectively, k’th order regularization gives some control as to the rate of change in the resulting
estimate (constant, linear, quadratic, etc). Note that this framework contains the classical
variant (3.35) with L = I = D

(0)
n as a special case. For k > 0, however, we see that

D
(k)
n ∈ R(n−k)×n is a rectangular matrix and, by design, has a non-trivial null-space spanned

by the first k moments of the sequence 0, ..., (n− 1)

ker(D(k)
n ) = span〈{v(0)

n , v
(1)
1 , ..., v(k−1)

n }〉
v(i)
n = (0i, 1i, ..., (n− 1)i)H

(3.42)

Hence ‖ · ‖L constitutes merely a semi-norm for L = D
(k)
n and k > 0. Inclusion of boundary

conditions would lend the matrix square shape without however correcting rank-deficiency.
Since the transformation (3.41) will not do under these conditions, we deal with a particular
case in some detail. For a more general discussion of possible strategies see [9] and the
references therein.

It will have been noted that finite difference matrices, essentially, are circulant matrices
representing convolution with a high-pass filter kernel. This principle expands very naturally
to the case of interest, if we replace the stencils [ 1 −1 ] and [ −1 2 −1 ] by their two-
dimensional counterparts [

1 0
0 −1

] [
0 1

−1 0

]
approximating first order directional derivatives and 0 1 0

1 −4 1
0 1 0


for the second order derivative. Now suppose that both A and L represent periodic 2D-
convolution with a PSF and one of the above kernels respectively. Then U = V = FH the
inverse Fourier Transform-Matrix and

A = FSFH S = diag (σ1, ..., σn) (3.43a)

L = FΛFH Λ = diag (λ1, ..., λn) (3.43b)

Setting ∇φ(f̂ ; L, f0) = 0 yields

(AHA+ αLHL)f̂ = AHg + LHLf0 (3.44)
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. By use of (3.43) we find that(
FS2FH + αFΛ2FH

)
f̂ = FSHFHg + αFΛ2FHf0

F
(
S2 + αΛ2

)
FH f̂ = F

(
SHFH g + αΛ2FH f0

)
FH f̂ =

(
S2 + αΛ2

)−1(
S2S−1FHg + αΛ2FHf0

) (3.45)

By writing out (3.45), we get

〈vi, f̂〉 = rα(σi, λi)
1
σi
〈vi, g〉+ (1− rα(σi, λi)) 〈vi, f0〉 (3.46)

for 1 ≤ i ≤ r, where

rα(σi, λi) =
σ2

i

σ2
i + αλ2

i

(3.47)

generalizes the classical Tikhonov filter function. Equation (3.46) characterizes the resulting
estimate as linearly interpolating between the principal and the default solution. Note that
due to the degeneracy of L some of the eigenvalues λi will be zero and consequently no
regularization is performed for the corresponding subspace — which is innocuous so long as
only frequencies of typically high signal-to-noise ratio are concerned.

Maximum Entropy (ME) While sticking to the principle of composite cost-functionals,
further generalization may be achieved by lifting the linearity constraint on L and take ϕm to
be an arbitrary functional. One such method with a non-linear penalty-function is Maximum
Entropy, where

ϕME
m (f) =

n∑
i=1

fi log fi (3.48)

Without trying to elucidate the philosophical background or discussing information theory,
we simply motivate (3.48) by the following observation.

Suppose the probability for any one intensity unit X to end up at location i in the image
plane is P (X = i) = pi with

∑n
i=1 pi = 1. Then the image f , given by the total of

∑n
i=1 fi = c

independent trials with dim(f) = n possible outcomes each, obeys a multinomial distribution
with pmf

ρ(f) =
c!∏n

i=1 fi!

n∏
i=1

pfi
i (3.49)

Now the implicit assumption leading to the Maximum Entropy functional (3.48) lets

p1 = p2 = ... = pn =
1
n

(3.50)

Then
∏n

i=1 p
fi
i = n−c and hence

log ρ(f) = log c!−
n∑

i=1

log fi!− c log n (3.51)
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Using Stirling’s approximation of the factorial n! ≈ en log n+O(n) and neglecting inconsequential
constants, we see that maximizing the log-likelihood (3.51) is roughly equivalent to minimizing
the Maximum Entropy functional (3.48)

arg max
f

ρ(f) = arg min
f
ϕME

m (f) (3.52)

For a more in-depth analysis of the ME principle and contextual background the reader is
referred to [12], [24] or any of the standard works on information theory.

3.2 Bayesian MAP Estimation

So far, we have considered ways to estimate a deterministic parameter of an otherwise known
distribution. When it comes to inverse — and thus notoriously ill-conditioned — problems,
regularization has been shown to be crucial for success. This principle of gearing the solution
toward more plausible candidates while discarding others which disagree with our presumed
knowledge about the ‘true’ image is rendered within a Bayesian framework by the concept of
prior probability. What makes this model slightly different from those considered so far, then,
is the status of the parameter as a random variable of its own. The idea that some solutions
by itself are more likely than the remaining ones translates as a non-flat prior pdf p(f).

In Baysian parameter estimation, the ‘solution’ to the problem is actually given in terms
of the conditional density or posterior pdf

p(f |g) =
p(g|f) · p(f)

p(g)
(3.53)

where ‘prior’ and ‘posterior’ refer to the state of information before and after the observation
has occurred. For most real-world applications, however, we are asked to give a single estimate
rather than a whole distribution. Basically, there are two strategies which do not necessarily
agree

• Mode of the posterior pdf
; Maximum A-Posteriori estimate f̂map = arg maxf p(f |g)

• Mean of the posterior pdf
; Minimum Mean Square Error estimate f̂mmse = E {f |g}

It seems to be common policy to choose fmmse so long as the pdf is unimodal and fmap

otherwise.

MMSE Estimate Note that by modelling the ‘true’ image as a random variable, we have

MISE
[
f̂
]

= Ef

{
Eg

{∥∥∥f − f̂(g)
∣∣∣ f∥∥∥2

2

}}
=
∫

F

∫
G

∥∥∥f − f̂(g)
∥∥∥2

2
ρ(f, g) dg df

(3.54)

with F , G the vector spaces associated with the respective lowercase variables and ρ(f, g) the
joint probability density function. It remains to prove that f̂mmse(g) = E {f |g} has minimal
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mean square error. To this effect let f̂(g) be an arbitrary estimate. Then∥∥∥f − f̂(g)
∥∥∥2

2
=
∥∥∥f − f̂mmse(g) + f̂mmse(g)− f̂(g)

∥∥∥2

2

=
∥∥∥f − f̂mmse(g)

∥∥∥2

2
+
∥∥∥f̂mmse(g)− f̂(g)

∥∥∥2

2
− 2

(
f − f̂mmse(g)

)H (
f̂mmse(g)− f̂(g)

)
Taking expectation for fixed g on both sides and using Ef{(f − f̂mmse(g))} = 0 yields

E
{∥∥∥f − f̂(g)

∥∥∥2

2

∣∣∣ g} = E
{∥∥∥f − f̂mmse(g)

∥∥∥2

2

∣∣∣ g}+ E
{∥∥∥f̂mmse − f̂(g)

∥∥∥2

2

∣∣∣ g}
≥ E

{∥∥∥f − f̂mmse(g)
∥∥∥2

2

∣∣∣ g} (3.55)

for the second term on the right-hand-side is non-negative. Since g was chosen arbitrary, we
obtain, by taking expectation with respect to g and exploiting monotony of the integral

MISE
[
f̂
]
≥ MISE

[
f̂mmse

]
(3.56)

which proves our claim that the mean of the posterior pdf is optimal in the sense of (3.54).

Gaussian Case Due to its flexibility, Bayesian MAP estimation is extremely powerful and
versatile. Owing to the practical interest of this thesis and its limited scope, however, we
shall only consider the standard case where both the prior p(f) and — consistent with what
has been done so far — the data for a given parameter p(g|f) are Gaussian. We start by
stating the following theorem:

Conditional pdf of random variables with jointly Gaussian distribution. Let X
and Y be two random variables with mean µX and µY respectively and jointly Gaussian
distribution. Then for a given observation Y = Y0 the conditional mean of X is given by

E {X | Y = Y0} = µX + Cov (X,Y ) Var [Y ]−1 (Y0 − µY ) (3.57)

with conditional variance equal to

Var [X | Y = Y0] = Var [X]− Cov (X,Y ) Var [Y ]−1 Cov (Y,X) (3.58)

Proof: Let Z = (XT Y T )T be the compound of the two random variables. By assumption
Z ∼ N (µZ ,ΛZ) is normally distributed with

µZ =
(
µX

µY

)
ΛZ =

(
Var [X] Cov (X,Y )

Cov (Y,X) Var [Y ]

)
(3.59)

and conditional density fX|Y (X|Y = Y0) = fZ(Z)/fY (Y0)

fX|Y (X|Y = Y0) =

√
|Var [Y ]|

(2π)dim(Y )|ΛZ |
exp

(
−1

2
(
Z̄HΛ−1

Z Z̄ − Ȳ H
0 Var [Y ]−1 Ȳ0

))
(3.60)

where Ȳ0 = Y0 − µY and Z̄ = Z − µZ denote the corresponding zero-mean variables. Now let
P = ΛZ the block-partitioned matrix in lemma 3.15 on page 23, so that Λ−1 = E1E2 =: L.
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Due to the symmetry of the variance matrix A = AH , B = CH and D = DH and therefore
L12 = LH

21. Using this equality, we want to write the first term of the exponential in (3.60)

Z̄Λ−1
Z Z̄ = X̄HL11X̄ + 2X̄HL12Ȳ0 + Ȳ H

0 L22Ȳ0

= (X̄ −M)HL11(X̄ −M) +R
(3.61)

as a quadratic form in a shifted variable (X̄ −M) plus a remainder R independent of X. By
comparing the coefficient of the linear term in X we find that

M = −(L11)−1L12 Ȳ0 R = Ȳ H
0 L22 Ȳ0 −MT L11M

= BD Ȳ0 = Ȳ H
0 (L22 − L21L

−1
11 L12)Ȳ0

= Cov (X,Y ) Var [Y ]−1 Ȳ0 = Ȳ H
0 D−1Ȳ0

Thus the exponential in (3.60) simplifies to

Z̄HΛ−1
Z Z̄ − Ȳ H

0 Var [Y ]−1 Ȳ0 = (X̄ −M)HL11(X̄ −M) +R− Ȳ0 Var [Y ]−1 Ȳ0

= (X − µX −M)HL11(X − µX −M)

= (X − µX|Y )HΛ−1
X|Y (X − µX|Y )

(3.62)

with

µX|Y = µX +M = µX + Cov (X,Y ) Var [Y ]−1 (Y0 − µY )

ΛX|Y = (L11)−1 = A−BD−1C = Var [X]− Cov (X,Y ) Var [Y ]−1 Cov (Y,X)
(3.63)

Finally consider that

|P | = |D| · |PE1|
= |D| · |A−BD−1C|

(3.64)

and therefore |ΛZ | = |Var [Y ]|·|ΛX|Y |. By substituting into (3.60) we obtain for the conditional
density

fX|Y (X|Y = Y0) =
1√

(2π)dim(Y )|ΛX|Y |
exp

(
−1

2
(X − µX|Y )HΛ−1

X|Y (X − µX|Y )
)

(3.65)

which is Gaussian with parameters (3.63) as claimed. �

Now consider the case of a linear mapping g = Af with Gaussian noise and prior

g|f ∼ N (Af,Φν) f ∼ N (µf ,Φf ) (3.66)

By theorem (3.57) we know that the posterior pdf is also Gaussian with

f̂map = f̂mmse = µf + ΦfA
H
(
AΦ−1

f AH + Φ−1
ν

)(
g −Aµf ) (3.67)

where the identities Cov (f, g) = ΦfA
H and Var [g] = AΦfA

H + Φν have been exploited.
However, by substituting into (3.53) and directly maximizing the log-likelihood in the usual
manner

f̂max = arg max
f

log p(f |g) (3.68)
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we obtain

f̂max =
(
AHΦ−1

ν A+ Φf

)−1(
AHΦ−1

ν g + Φ−1
f µf

)
(3.69)

which looks different at first sight. To see that (3.67) and (3.69) are actually identical, consider
that (

AHΦ−1
ν A+ Φ−1

f

)
Cov (f, g) = AHΦ−1

ν AΦfA
H +AH

= AHΦ−1
ν

(
AΦfA

H + Φν

)
= AHΦ−1

ν Var [g]

(3.70)

or, equivalently, Cov (f, g) Var [g]−1 = QAHΦ−1
ν with Q := (AHΦ−1

ν A + Φ−1
f )−1. Using this

representation, we can finally establish the identity

f̂map = Cov (f, g) Var [g]−1 (g −Aµf ) + µf

= Q
(
AHΦ−1

ν (g −Aµf ) +Q−1µf

)
= Q

(
AHΦ−1

ν (g −Aµf ) + (AHΦ−1
ν A+ Φ−1

f )µf

)
= Q

(
AHΦ−1

ν g + Φ−1
f µf

)
= f̂max

(3.71)

Connection to Tikhonov Regularization Bayesian MAP estimation provides a flexible and
at the same time elegant framework for the incorporation of regularization constraints. For
our simple case where the model is linear and the densities involved all Gaussian, however,
the Bayesian approach does not result in a substantial advance compared with previously
discussed methods. We conclude this chapter by noting that for

Φν = σ2
νI

(Φf , µf ) = (σ2
f I, 0)

(3.72)

the Bayesian MAP estimate

f̂map = AH
(
AAH +

σ2
ν

σ2
f

I)−1g

= V S2(S2 + α)−1S−1UHg

(3.73)

is indeed equivalent to the classical Tikhonov estimate with α = σ2
ν/σ

2
f the reciproque of the

signal-to-noise ratio.
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Figure 3.5: Solutions for different α, from ultra-rough to oversmooth



CHAPTER 4. ALGORITHMS

4 Algorithms

After exploring the mathematical theory of linear inverse problems in some detail we now
present a selection of derived algorithms. Spurred by the development of new imaging tech-
nologies, the problem has been in the focus of keen investigation ever since the 60’s of the
last century, calling the attention of many ambitious researchers. Over the years those have
come up with a variety of approaches whose sheer number is symptomatic for the unrelenting
interest dedicated to image deconvolution. Any attempt for completeness, therefore, is bound
to fall short of its claim.

Orientation is facilitated by classifying the variety of algorithms on the basis of well-defined
criteria. The most comprehensive and ambitious attempt to date can be found in the intro-
ductory chapter of [13], reflecting the state of the art of image restoration in 1989. Although
somewhat out of data by now, to our knowledge it is still the best endeavor in this regard.
(The distinction between stochastic and deterministic at the top node in his classification
strikes us as unfortunate, though, being mostly a matter of perspective and therefore some-
what arbitrary.)

The algorithms, all of certain renown in their category, have been chosen so as to give a
reasonably broad overview, covering both direct and iterative approaches. The comparably
recent branch known as ‘blind’ deconvolution is represented by an EM-based algorithm. Di-
versity finally extends to the level of transform domains, where both Fourier and Wavelet
approaches are considered.

4.1 Wiener Filter

The concept of the Wiener Filter is straightforward and naturally follows by developing the
ideas outlined in the section on Bayesian MAP Parameter Estimation. By definition, the
Wiener estimate f̂W is the (affine-)linear function in the data g of minimal mean (integrated)
square error

f̂W = arg min
f̂∈Ω

MISE
[
f̂
]

Ω = {f̂ | f̂(g) = Rg + r} (4.1)

with R a linear map and r a constant. Note that the pristine image f is modelled as a random
variable. We shall see that due to the linearity constraint, it suffices that second order of the
problem be known. For the case of Gaussian prior and data we already know that f̂mmse is
(affine-)linear in g and therefore

f̂W = f̂mmse = E {f |g} = µf + Cov (f, g) Var [g]−1 (g − µg) (4.2)

according to (3.56) and (3.57), but the same is not true in general.
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Derivation For the general case we are going to use the following lemma, given here without
proof.

Lemma. Let x : Ω −→ Rn be a random variable with density ρ(x). Then for h(x; p) :
Ω × P −→ Rm with both h(x; p), ∂ph(x; p) ∈ L1(Ω) for each p ∈ P we can interchange
expectation and differentiation

∂p E {h(x; p)} = ∂p

∫
h(x; p)ρ(x)dx =

∫
∂ph(x; p)ρ(x)dx = E {∂ph(x; p)} (4.3)

By postulation, the mean (integrated) square error functional (restricted on Ω) has a minimum
at f̂ = f̂W and thus

0 = ∇r MISE
[
f̂W

]
= ∇r E

{
(f −Rg − r)H(f −Rg − r)

}
= 2 (r +R− µf )

(4.4)

will hold. (Here the lemma has been used.) The gradient vanishes for r = µf − Rµg and we
obtain

f̂W (g) = R(g − µf ) + µf (4.5)

The identification of the remaining parameter is simplified by considering the equivalent
mean-subtracted problem with f ′ := f − µf and g′ = g − µg. Again, we differentiate with
respect to Rij and solve for the root of the partial derivative

0 =
∂

∂Rij
MISE

[
f̂W

]
=

∂

∂Rij
E
{
(f ′ −Rg′)H(f ′ −Rg′)

}
=

∂

∂Rij
E

{∑
k

(
f ′k −

∑
l

Rklg
′
l

)2
}

= E

{
2
(
f ′i −

∑
l

Rilg
′
l

)
· (−g′j)

}

= 2

(∑
l

Ril E
{
g′g′H

}
lj
− E

{
f ′g′H

}
ij

)
(4.6)

Hence RVar [g] = Cov (f, g) or, equivalently, R = Cov (f, g) Var [g]−1. Substituting into (4.5)
finally yields

f̂W = µf + Cov (f, g) Var [g]−1 (g − µg) (4.7)

which is identical to (4.2). We may then further specify our finding by stating that f̂W is the
optimal (affine-)linear approximation of f̂mmse with equality holding if the distributions are
Gaussian and thus completely specified by second order statistics.

Fourier-Domain Representation and Implementation For the case of interest in this paper
— estimating the inverse when the forward mapping takes the form of circular convolution
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with the impulse response of an LSI system — the Wiener Filter has a particularly simple
and computationally efficient representation in the Fourier domain.

Consider the following scenario. Let

f ∼ N (µf ,Φf ) ν|f = g −Af ∼ N (0,Φν) (4.8)

both wide-sense-stationary with A,Φf ,Φν ∈ Rmn×mn BCCB, m and n denoting height and
width of the image respectively. Let further F = Fm ⊗ Fn the two-dimensional DFT matrix
as in (2.24). Then, by substituting into (4.7) and taking Fourier Transform

F = SAH(ASAH +N )−1(G −AM) +M (4.9)

where

S = FΦfF
H F = F f̂W (4.10a)

N = FΦνF
H G = Fg (4.10b)

A = FAFH M = Fµf (4.10c)

According to the convolution theorem 2.2 all Fourier transformed matrices in (4.9) are diag-
onal

Cf = diag (FΦfe1)
Cν = diag (FΦνe1)
A = diag (FAe1)

(4.11)

so that (4.9) factorizes into a set of independent scalar operations. Rewriting the equation
for any one component, using superscript indices and the asterisk (∗) denoting complex con-
jugation, we find that

F (i) =
S(i,i)A(i,i)∗

S(i,i)|A(i,i)|2 +N (i,i)

(
G(i) −A(i,i)M(i)

)
+M(i)

=
|A(i,i)|2

|A(i,i)|2 + N (i,i)

S(i,i)

( G(i)

A(i,i)
−M(i)

)
+M(i)

(4.12)

for 1 ≤ i ≤ mn and S(i, i) 6= 0. Written as a product of two terms, one acting as a
regularization coefficient while the other takes charge of the actual inversion, (4.12) closely
resembles the Tikhonov estimate. Note, however, that the ratio N (i,i)/S(i,i) and hence the
amount of regularization is allowed to vary as a function of frequency here. Translating (4.12)
into Matlab-code a primitive form of the Wiener-Filter could be implemented as follows
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function f = wiener (A, g, mu, Cf, Cnu)

%% A discrete blur operator (BCCB)
%% g blurred image
%% mu mean of the prior distribution
%% Cf variance of the Gaussian prior (BCCB)
%% Cnu variance of the Gaussion noise (BCCB)

mn = size(g);

H = fft2(reshape(A(:,1), mn));
S = fft2(reshape(Cf(:,1), mn));
N = fft2(reshape(Cnu(:,1), mn));
G = fft2(g);
M = fft2(mu);

R = S .* conj(H) ./ (S .* abs(H).^2 + FCnu);
F = R .* (G - H .* M) + M;
f = real(ifft2(F));

A more sophisticated implementation addressing issues of numerical stability can be found
in the Matlab image processing toolbox. Succinctness and clarity of code have been given
priority over these considerations, as it befits the conceptual framework elaborated here.

Choice of Parameters A open question of practical interest is the choice of (µf ,Φf ) com-
prising the prior distribution. Being rarely in the position to make an informed conjecture
about the ‘true’ image, the best we can do here is a zero-mean prior µf = 0 penalizing solu-
tions with high energy. As for the remaining parameter which contributes indirectly to the
ratio N (i,i)/S(i,i) in (4.12) and effectively controls the amount of regularization for individual
subspaces, consider the following argumentation. Let X be zero-mean WSS with

Cov (Xi, Xj) = RXX(i− j) (4.13)

(Without loss of generality we consider the one-dimensional case for simplicity.) An estimate
of this quantity is given by the sample auto-correlation

RXX ≈ cRXX RXX :=
∑

k

XkXk+i (4.14)

where c is a normalizing constant — usually 1/(dim(X) − 1) — and X is assumed to be
periodic in each dimension. By letting ΦX := Var [X] and taking Fourier-Transform on both
sides we obtain

FΦXe1 ∝ FRXX = |FX|2 (4.15)

where the absolute value is to be understood componentwise. The last equality uses a simple
corollary of 2.2 known as Wiener-Khinchin theorem, stating that the (unnormalized) auto-
correlation and the power spectrum density of the process are transform pairs. Using (4.15),
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we return to the pending issue of sensibly choosing the regularization parameter and suggest
the following heuristic

N (i,i)

S(i,i)
≈ |(Fν)i|2

|(Ff)i|2
≈ σ2

ν

|(Fg)i|2
(4.16)

where the last approximation may be argued by taking expectation in the numerator

E
{
|(Fν)i|2

}
=
(
E
{
Fν(Fν)H

})
ii

= σ2
ν (4.17)

and substituting the observable degraded image for the unknown ‘true’ one in the denomi-
nator. Admittedly, this latter replacement is somewhat gross and should only be used if no
a-priori information is available.

Complexity The computational complexity is dominated by the asymptotic behaviour of
the Fast Fourier Transform (FFT), which is O(n log n). This efficiency is quite remarkable
and the main reason why the class of Wiener Filters — with all its numerous offsprings and
variants — is still the method of choice for real-time applications.

4.2 Expectation Maximization

Although not by itself a deconvolution algorithm, Expectation Maximization (EM) is a useful
technique to identify the ML estimate under degenerate conditions. Here is what we mean
by it.

Maximum Likelihood estimation seeks to maximize the conditional probability f(X|θ) for
a given observation X over the parameter set Θ. Exploiting positivity of probabilities, the
problem often is considered in terms of log-likelihood

θML = arg max
θ∈Θ

log fX|θ(X|θ) (4.18)

where X and θ are data and model-parameter respectively and fX|θ is typically derived from a
well-investigated physical model. (Usually the distribution of the forward mapping is peaked
around the deterministic solution with a certain spread or variance allowing for measurement
errors and limited accuracy.) In some cases, however, we can only observe a quantity Y
related indirectly to the complete data X by a many-to-one mapping

Y = h(X) (4.19)

for a non-injective h. EM-iterations are useful whenever the explicit derivation of the modified
pdf fY |θ is too complicated or simply not feasible. They may be shown to converge to a local
maximum of the pdf, allowing the identification of the ML estimate under conditions as in
(4.19). This convenience, however, comes at the price of an often painfully slow performance.

In the following we outline the general concept before presenting two particular applications
of EM in subsequent sections of this chapter. For a more comprehensive derivation of the
algorithm and its illuminating recast as maximization of cross-entropy, see [21], [13], [18] and
the references therein.
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If an explicit representation of the unknown density fY |θ is not available we can start from
the following observation

f(X|Y, θ) =
f(X,Y |θ)
f(Y |θ)

(4.20)

which relates the unknown pdf of the observable data Y to the known distribution of the
unobservable quantity X. Since h is a deterministic mapping the joint pdf fX,Y = fX is
simply the density of the complete data. By simplifying (4.20) in this sense and taking the
logarithm after solving for fY |θ we obtain

log f(Y |θ) = log f(X|θ)− log f(X|Y, θ) (4.21)

Now let θp ∈ Θ be arbitrary but fixed. Integrating with respect to the probability measure
fX|Y,θp

yields∫
log f(Y |θ) f(X|Y, θp) dX =

∫ (
log f(X|θ)− log f(X|Y, θ)

)
f(X|Y, θp) dX

log f(Y |θ) = E {log f(X|θ) | Y, θp}︸ ︷︷ ︸−E {log f(X|Y, θ) | Y, θp}︸ ︷︷ ︸
=: Q(θ|θp) =: H(θ|θp)

(4.22)

since the left-hand-side does not depend on X. Note that the result is a log-likelihood

log f(Y |θ) = Q(θ|θp)−H(θ|θp) (4.23)

which for any given observation Y can be maximized over the parameter θ. This would be
the ordinary proceeding of ML-estimation if the right hand side of (4.23) did not depend on
the previously fixed θp. If we take this to be the current guess for the Maximum Likelihood
estimate θML, the following iterative scheme is obvious enough. The very idea of EM, in fact,
is to get successively better approximations by letting

θp+1 = arg max
θ∈Θ

log f(Y |θ)

= arg max
θ∈Θ

(
Q(θ|θp)−H(θ|θp)

) (4.24)

the maximizer of (4.23) and repeat (4.24) until convergence is achieved. It turns out that
this first draft can be greatly simplified by the following observations. In particular, we shall
see that

Q(θp+1|θp) ≥ Q(θp|θp) ⇒ log f(Y |θp+1) ≥ log f(Y |θp) (4.25)

In other words, for the sequence of Log-likelihoods log f(Y |θp), p = 0, 1, 2, ... to be
monotonously non-decreasing it is sufficient that the left-hand-side of (4.25) holds true. To
prove the implication, consider the update ∆(p) at step p→ p+ 1

∆(p) = log f(Y |θp+1)− log f(Y |θp)
=
(
Q(θp+1|θp)−Q(θp|θp)

)
+
(
H(θp|θp)−H(θp+1|θp)

) (4.26)

We show that the second difference on the right-hand-side is non-negative. For this end
consider Jensen’s inequality, stating that ϕ(E {x}) ≤ E {ϕ(x)} for a convex function ϕ and
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both x, ϕ(x) ∈ L1. Since log′′ x = −x−2 < 0 the inequality can be applied for ϕ(x) = − log x
to find that

H(θp|θp)−H(θp+1|θp) = E {log f(X|Y, θp)− log f(X|Y, θp+1) | Y, θp}

= −
∫

log
(
f(X|Y, θp+1)
f(X|Y, θp)

)
· f(X|Y, θp) dX

≥ − log
∫
f(X|Y, θp+1)
f(X|Y, θp)

· f(X|Y, θp) dX

= − log 1
= 0

(4.27)

as claimed above. Hence improvement ∆(p) ≥ 0 is guaranteed whenever the condition
Q(θp+1|θp) ≥ Q(θp|θp) is satisfied, ensuring that we move toward a local maximum of the
pdf f(Y |θ). This finding renders the update (4.24) a lot easier, since we only need to concen-
trate on maximizing Qp(θ) := Q(θ|θp).

In pseudo-code the EM algorithm then reads as follows:

• Set starting value
Let θ0 ∈ Θ arbitrary.

• Iterate

1. E-step:
Compute Qp(θ) = E {log f(X|θ) | Y, θp}

2. M-step:
Set θp+1 = arg maxθ∈ΘQp(θ)

while θp+1 6= θp repeat steps 1-2 with p = p+ 1

If the pdf is multimodal, some care must be taken when choosing the starting value, since
EM converges only to a local maximum.

Exponential Family Another important simplification can be achieved whenever the pdf
f(X|θ) — or pmf in case of a discrete random variable — is a member of the so-called
exponential family which have the representation

f(X|θ) =
b(X) · exp

(
c(θ)T t(X)

)
a(θ)

(4.28)

The majority of the commonly used distributions fall into that category, including Gaussian
and Poissonian which shall be considered in some detail hereafter.

Factorizing the pdf in quantities that depend exclusively on either X or θ greatly simplifies
the proceeding, for in either of the alternating steps we only have to consider the components
relevant to the respective stage. The E-step exclusively involves quantities depending on X
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which in turn may be ignored during subsequent maximization over θ in the M-step. By
substituting (4.28) into the defining equation we obtain

Qp(θ) = E {log f(X|θ) | Y, θp}
= E {log b(X) | Y, θp}+ c(θ)T E {t(X) | Y, θp} − log a(θ)

(4.29)

Better still, the first term on the right-hand-side, being independent of θ, is inconsequential
for the M-step. In the E-step, thus, it is sufficient to compute

tp+1(X) = E {t(X) | Y, θp} (4.30)

while the M-step simply reduces to

θp+1 = arg max
θ∈Θ

c(θ)T tp+1 − log a(θ) (4.31)

We shall make use of this simplification throughout the following sections, effectively replacing
the two steps in the diagram by (4.30) and (4.31).

4.3 Richardson-Lucy

This algorithm, originally developed by Richardson and later refined by Lucy, is one of the
few to actually take into account a Poissonian distribution of the noise. It is being successfully
used in the fields of astronomical imagery. Its popularity and renown stems to a great extend
from its much acclaimed application to Hubble Space Telescope (HST) data, where to the
common appraisal it did a terrific job in restoring the blurred images. Richardson-Lucy has
become a prime example of how astute mathematical processing of the data — and thus
comparably inexpensive software — can make up, at least within certain limits, for hardware
deficiency as was the case with the initially flawed optics of the HST.

The Richardson-Lucy algorithm can be viewed as a first example of EM iterations that
converge to the ML-estimate of the pristine image when the model is a linear mapping with
Poisson-distributed intensities.

Derivation We shall need the following lemma which by induction readily extends to any
finite number of variables. To resolve ambiguities, the notation p(var = val) is used oc-
casionally in order to discriminate clearly between the random variable in question and its
value.

Lemma. Let X ∼ Po(λx) and Y ∼ Po(λy) be two independent Poissonian random variables.
Then the sum Z := X + Y is also Poisson with distribution Z ∼ Po(λx + λy).
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Proof:

p(Z = N) =
N∑

K=0

p(X = K) · p(Y = N −K)

=
N∑

K=0

e−λx
λK

x

K!
· e−λy

λN−K
y

(N −K)!

= e−(λx+λy) 1
N !

N∑
K=0

(
N

K

)
λK

x λN−K
y

= e−(λx+λy) (λx + λy)N

N !

(4.32)

�

We now introduce the complete data as follows. Let X = {Xij}i,j=1...mn an (unobservable)
random variable with Xij the number of photons emitted at location j in the original scene
and detected at location i by the recording system. Assume further that all components are
independently Poisson with distribution Xij ∼ Po(Aij · fj).

p(X|f) =
mn∏

i,j=1

exp(−Aijfj)
(Aijfj)Xij

Xij !
(4.33)

= exp(−1TAf) ·
mn∏
ij=1

(Aijfj)Xij

Xij !
(4.34)

Then the intensities of the blurred and pristine image are given by the row-sums and column-
sums of X respectively

g = X1 ∈ Rmn f = 1TX ∈ Rmn (4.35)

Note that the complete data X includes both the observation g and the parameter f which
for convenience only are assumed to have identical size. There is no need that X be square,
and the algorithm readily extends to a scenario of different resolution.

Distribution (4.33) is a member of the exponential family, factorizing into

p(X|f) =
b(X) exp

(
c(f)T t(X)

)
a(f)

(4.36)

with

t(X) = vecX a(f) = exp(1TAf) (4.37a)

b(X) =
(∏

i,j

Xij !
)−1

c(f) = vecC Cij = logAijfj (4.37b)

According to (4.30) the E-step consists in computing tp+1 = E
{
t(X)|g, f (p)

}
=

vec E
{
X|g, f (p)

}
. Since all components Xij are assumed to be independent we have

E
{
X | g, f (p)

}
ij

= E
{
Xij | g, f (p)

}
= E

{
Xij | gi, f

(p)
}

(4.38)
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for 1 ≤ i, j ≤ mn. To evaluate the conditional expectation, consider that the corresponding
pmf is

p(Xij = M |gi = N, f (p)) =
p(gi = M |Xij , f

(p)) · p(Xij = M |f (p))
p(gi = N |f (p))

(4.39)

according to Bayes rule. By applying the lemma (4.32) on the first term in the numerator we
obtain

p(gi = M | Xij , f
(p)) = p

(∑
k 6=j

Xik = N −M |f (p)
)

= exp
(
−
∑
k 6=j

Aikf
(p)
k

)
·

(∑
k 6=j Aikf

(p)
k

)N−M

(N −M)!

(4.40)

Proceeding in the same way for the remaining terms in (4.39) yields an explicit representation
for the conditional pmf

p(Xij = M |gi = N, f (p)) =
e−
P

k 6=j Aikf
(p)
k ·

(∑
k 6=j Aikf

(p)
k

)N−M · e−Aijf
(p)
j ·

(
Aijf

(p)
j

)M ·N !

(N −M)! ·M ! · e−
P

k Aikf
(p)
k ·

(∑
k Aikf

(p)
k

)N

=
(
N

M

)
·
(
(Af (p))i −Aijf

(p)
j

)N−M ·
(
Aijf

(p)
j

)M(
(Af (p))i

)N
=
(
N

M

)
· qM · (1− q)N−M

with q = Aijf
(p)
j /(Af (p))i = E {Xij} /E {gi}. Obviously this is the pmf of a binomial distri-

bution, with M the number of positive outcomes out of a total of N Bernoulli-trials, each
successful with probability q. According to a well-known rule the expectation of a binomial
random variable M ∼ Bin(N, q) is simply given by E {M} = Nq or the number of trials
multiplied with the probability of success. Thus

E
{
Xij | gi = N, f (p)

}
=

N∑
M=0

M · p(Xij = M | gi = Nf (p))

= N ·
Aijf

(p)
j

(Af (p))i

(4.41)

Vertically stacking the components finally yields tp+1 = vec E
{
X | g, f (p)

}
. We now take a

closer look at the M-step of the algorithm which requires the maximization of

Q(p)(f) = c(f)T tp+1 − log a(f) (4.42)

Differentiating with respect to each component of f and equating the partial derivatives to
zero yields an explicit representation of f (p+1) = arg maxQ(p)(f). As necessary condition we
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thus obtain

0 =
∂

∂fk
Q(p)(f) =

∂

∂fk

 mn∑
i,j=0

logAijfj · E
{
Xij | gi, f

(p)
}
− 1TAf


=

mn∑
i=0

(
1

Aikfk
Aik · E

{
Xik | gi, f

(p)
})

−
mn∑
i=0

Aik

=
f

(p)
k

fk

mn∑
i=0

(
gi ·

Aik

(Af (p))i

)
−

mn∑
i=0

Aik

(4.43)

Solving for fk finally yields the new estimate

f
(p+1)
k =

f
(p)
k

1TA
·

mn∑
i=1

gi ·
Aik

(Af (p))i
(4.44)

for 1 ≤ k ≤ mn. If we define dot and bar to be element-wise multiplication and division
respectively, the update rule may be expressed compactly as

f (p+1) =
f (p)

1TA
·AT

(
g

Af (p)

)
(4.45)

Implementation As before, we give the bare skeleton of an implementation in Matlab-code,
reduced to the essential. For additional feature see the image processing toolbox.

function [f, delta, k] = RL(A, g, f, iters)
%% A discrete blur operator (BCCB)
%% g blurred image
%% f start value for estimate
%% iters maximum number of steps

[m,n] = size(g);
h = fft2(A(:,1));
c = real(ifft2(conj(h) .* fft2(ones(m, n))));

k = 0;
delta = 1;
while k < iters && delta > 1e-3

z = g ./ real(ifft2(h .* fft2(f)));
fnew = f ./ c .* real(ifft2(conj(h) .* fft2(z)));
delta = (fnew - f) ./ f;
delta = max(delta(:));
f = fnew;
k = k + 1;

end
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Complexity and Convergence Rate Assessing the convergence properties of EM-based al-
gorithms under sufficiently general conditions proves to be extremely difficult. To our best
knowledge, there are no reasonably tight bounds on the rate of convergence without reverting
to assumptions more or less peculiar to a certain domain of application.

The few known endeavors in this respect [26], [4], both fairly recent publications, assume
that the ‘true’ image is made up of Gaussian shaped light sources which restricts their findings
more or less to astronomical imagery. True enough, this is where Richardson-Lucy is being
primarily applied, but it does not make for our case. Lacking a formal quantification, then,
we have to fall back on experimental observations. Compared to the direct approach of, say, a
Wiener filter, EM-iterations are often painfully slow. [1] have proposed a numerical technique
for accelerating the procedure which, by their claim, boasts an average speed-up factor of 40
in the long run (for restorations iterating more than 250 cycles). Being rather technical and
not specific to the Richardson-Lucy algorithm, we omit its presentation as not pertinent to
the conceptual framework elaborated here.

When it comes to convergence rates, it is important to bear in mind another aspect. As a
matter of fact, ultimate convergence, very often, is not even desirable. Richardson-Lucy is an
example of non-Bayesian ML estimation, which normally leads to data-overfitting and noise
amplification, if no additional constraint is applied. This effect is less dramatic in an iterative
approach, where a premature halt of the algorithm — that is, before convergence is achieved
— can act as a form of regularization. The optimal moment for termination, however, proves
difficult to determine by an objective criterion. The question when to stop the iterations,
analogue to parameter rules in direct approaches, is much less well-investigated and has not
yet been satisfactorily answered.

4.4 Blind Deconvolution

What makes EM so powerful is its ability to cope with ‘hidden’ information by introducing
the notion of the unobservable complete data. Basically this is another stage of indirection
in the model, allowing for a degenerate relation between the observable quantity and the pdf
to be maximized. It stands to reason that this principle can be usefully applied to tackle
the problem of blind deconvolution. Due to its reputed and factual difficulty, this variant is
less well investigated than its non-blind counterpart — regrettably so, for the point-spread-
function is rarely known in advance. Even with the optical device at hand, which is already a
privileged situation, making this information available is not a trivial matter. Lately, however,
blind deconvolution has received growing attention, reflected by publications such as [15], [16],
[22] and others.

One of the more promising proposals in this field of research goes back to Katsaggelos
[14, 13] who has shown that EM naturally expands to blind deconvolution by including the
PSF among the parameters to be estimated. In this section we review the derivation of his
algorithms or, more precisely, a variant that strikes us as particularly useful.

Derivation With the presently discussed algorithm we return to a Bayesian framework of
parameter estimation where regularization takes the form of prior probability. Also, to keep
the problem tractable in spite of the innate difficulty of blind deconvolution we stick with the
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comparably simple Gaussian models for prior and noise

f ∼ N (0,Λf ) g|f ∼ N (Af,Λν) (4.46)

where f, g ∈ Rmn, as usual, denote pristine and blurred image respectively, both of size
m× n. In contrast to the models considered so far, however, both of the above densities are
implicitely understood as conditioned upon the set of parameters

θ = (Λf ,Λν , A) (4.47)

Again, it is assumed that all matrices involved are BCCB to facilitate computation later on
by discrete Fourier-transforms. Somewhat surprisingly perhaps, f does not show up as one of
the parameters to be estimated, as one would expect of the quantity we are most interested
in, after all. Instead, it constitutes the unobservable part of the complete data x, whose
ML-estimate will be computed as a by-product during the E-step. Hence the observable
information g relates to the complete data by the non-injective mapping

g = (0T 1T ) · x x =
(
f
g

)
(4.48)

which is simply the projection on the second mn components of x. As for the distribution
of the complete data, we find that since both f ∼ N (0,Λf ) and g ∼ N (0, AΛfA

H + Λν) are
zero-mean Gaussian, their joint pdf

p(x|θ) =
1√

(2π)2mn|Λx|
· exp(−1

2
xHΛ−1

x x) (4.49)

must also be Gaussian with mean µx = E {x} = 0. On the other hand, it clearly holds that

p(x|θ) = p(g|f, θ) · p(f |θ)

=
1√

(2π)2mn|Λν ||Λf |
exp

[
−1

2
(
(g −Af)HΛ−1

ν (g −Af) + fHΛ−1
f f

)] (4.50)

By equating (4.49) and (4.50) an explicit representation of Λx can be derived. Note that the
exponential is a positive definite quadratic form in x which, by sorting for the quadratics in
either of the components and a mixed term is given by

xHΛ−1
x x = (g −Af)HΛ−1

ν (g −Af) + fHΛ−1
f f

= fHB11f + fH(B12 +BH
21)g + gHB22g

(4.51)

with

B11 = AHΛ−1
ν A+ Λ−1

f

B12 = BH
21 = −AHΛ−1

ν

B22 = AHΛ−1
ν

(4.52)

Identifying the Bij for i, j ∈ {1, 2} with the blocks of the partitioned inverse variance matrix
finally yields

Λ−1
x =

 AHΛ−1
ν A+ Λ−1

f −AHΛ−1
ν

−Λ−1
ν A Λ−1

ν

 ∈ R2mn×2mn (4.53)
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We can simplify the EM iteration by the shortcuts (4.30) and (4.31) for densities of the
exponential family, since

p(x|θ) =
b(x) · exp(c(θ)T t(x))

a(θ)
(4.54)

with

b(x) = 1 c(θ) = −1
2

vec Λ−1
x (4.55a)

t(x) = vecxxH a(θ) = (2π)mn
√
|Λν ||Λf | (4.55b)

So, again, we have

Qp(θ) = c(θ)T tp+1 − log a(θ) (4.56)

this time, however, with

c(θ)T tp+1 = −1
2

2mn∑
i=1

2mn∑
j=1

(Λ−1
x )ij · E

{
xxH | g, θ

}
ji

= −1
2

2mn∑
i=1

(
Λ−1

x E
{
xxH | g, θ

})
ii

= −1
2

trace
(
Λ−1

x E
{
xxH | g, θ

})
(4.57)

and

− log a(θ) = −mn log 2π − 1
2

log|Λν | −
1
2

log|Λf | (4.58)

Ignoring the constant term irrelevant for the maximization, the M-step during which param-
eters are actually updated, looks as follows

θp+1 = arg max
θ
Qp(θ)

= arg min
θ

{
trace

(
Λ−1

x E
{
xxH | g, θ

})
+ log|Λν |+ log|Λf |

} (4.59)

Now let µ(p)
f |g = E {f | g, θp} denote the conditional mean of the pristine image which is also

the approximation of the sought ML-estimate at step p. Considering the first term of the
right hand side in (4.59) and using (4.53) we find that AHΛ−1

ν A+ Λ−1
f −AHΛ−1

ν

−Λ−1
ν A Λ−1

ν

 ·

 Λ(p)
f |g + µ

(p)
f |gµ

(p)H
f |g µ

(p)H
f |g g

gµH
f |g ggH


︸ ︷︷ ︸ ︸ ︷︷ ︸

Λ−1
x E

{
xxH | g, θ

}

=

 (Λ−1
f +AHΛ−1

ν A)(Λ(p)
f |g + µ

(p)
f |gµ

(p)H
f |g )−AHΛ−1

ν gµ
(p)
f |g ∗

∗ −Λ−1
ν (Aµ(p)H

f |g g − ggH)
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since we are only interested in the diagonal entries. Applying the trace operator and using
the identity trace(SxyH) = yHSx, the function to be minimized becomes

Q′p(θ) = trace
(
(Λ−1

f +AHΛ−1
ν A) · Λ(p)

f |g
)

+ log|Λν |+ log|Λf |

+ µ
(p)H
f |g (Λ−1

f +AHΛ−1
ν A)µ(p)

f |g − 2gHAΛ−1
ν µ

(p)
f |g + gHΛ−1

ν g
(4.60)

The conditional mean is constructed according to theorem (3.57) using the current estimates

µ
(p)
f |g = Cov (f, g) Var [g]−1 g

= ΛfA
(p)H(A(p)Λ(p)

f A(p)H + Λ(p)
ν )−1g

(4.61)

As for the conditional variance, substituting into (3.58) yields

Λ(p)
f |g = Var [f ]− Cov (f, g) Var [g]−1 Cov (g, f)

= Λ(p)
f − ΛfA

(p)H(A(p)ΛfA
(p)H + Λ(p)

ν )−1A(p)Λ(p)
f

(4.62)

As usual, blur, prior and noise have been assumed to be shift-invariant — or wide-sense-
stationary, as far as random processes are concerned —, so that all matrices are BCCB and
can be diagonalized relative to the same basis. For a vector v define v̂ := Fv its Fourier-
transform and similarly M̂ := FMFH for a matrix M . Then

Â = diag (α) α = FAe1 (4.63a)

Λ̂f = diag (λf ) λf = FΛfe1 (4.63b)

In the following, to avoid further complicating (4.64) by additional indices, we shall under-
stand multiplication and division to be defined componentwise. Assuming AWGN noise with
standard deviation σν we have, in current notation

µ̂
(p)
f |g =

α(p)∗ · λ(p)
f

|α(p)|2 · λ(p)
f + σ

2(p)
ν

· ĝ (4.64)

Note that this is the Fourier-domain representation of the Wiener filter already derived in
(4.12). Applying a similar transformation to the conditional variance yields Λ̂(p)

f |g = diag(λ(p)
f |g)

with

λ
(p)
f |g =

λ
(p)
f · σ2(p)

ν

|α(p)|2 · λ(p)
f + σ

2(p)
ν

(4.65)

Exploiting invariance of the determinant and trace operators under orthogonal transforma-
tion, (4.60) can be written as

Q′p(θ) = trace
(
Λ̂−1

f + ÂHΛ̂−1
ν Â) · Λ̂(p)

f |g
)

+ log|Λ̂ν |+ log|Λ̂f |

+ µ̂
(p)H
f |g (Λ̂−1

f + ÂHΛ̂−1
ν Â)µ̂(p)

f |g − 2<
(
ĝHÂΛ̂−1

ν µ̂
(p)
f |g

)
+ ĝHΛ̂−1

ν ĝ
(4.66)
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Since all matrices are diagonal, we may write out (4.66) as a sum of scalar operations

Q′p(θ) =
mn∑
i=1

[(
1

λf (i)
+
|α(i)|2

σ
2(p)
ν

)
· λ(p)

f |g(i) +

(
1

λf (i)
+
|α(i)|2

σ
2(p)
ν

)
· |µ̂(p)

f |g(i)|
2−

2<
(
ĝ(i)∗ · α(i) · µ̂(p)

f |g(i)
)

+ |ĝ(i)|2

σ
2(p)
ν

+ log λ(p)
f (i) + log σ2(p)

ν

 (4.67)

Sorting the terms and minor simplifications finally yield the modified cost function

Q′p(θ) = mn · log σ2(p)
ν +

mn∑
i=1

[
1

λf (i)
·
(
λ

(p)
f |g(i) + |µ̂(p)

f |g(i)|
2
)

+ log λ(p)
f (i)

]
+

1

σ
2(p)
ν

mn∑
i=1

[
|α(i)|2

(
λ

(p)
f |g(i) + |µ̂(p)

f |g(i)|
2
)
− 2<

(
ĝ(i)∗ α(i) µ̂(p)

f |g(i)
)

+ |ĝ(i)|2
] (4.68)

which has to be minimized during the M-step in order to obtain the updated estimates

θp+1 = (Λ(p+1)
f ,Λ(p+1)

ν , A(p+1)) = arg minQ′p(θ) (4.69)

for the next iteration. Proceeding as usual, we set

∇θQ
′
p(θp+1) =

 ∇αQ
′
p

∇λf
Q′p

∇σ2
ν
Q′p

 (θp+1) = 0 (4.70)

By solving for the parameters of interest we get

λ
(p+1)
f = λ

(p)
f |g + |µ̂(p)

f |g|
2 α(p+1) =

ĝ∗µ̂
(p)
f |g

λ
(p)
f |g + |µ̂(p)

f |g|2
(4.71)

as new estimates of the ‘true’ image and the spectrum of the blur kernel. As to the noise-
variance, we find that

σ2(p+1)
ν =

mn∑
i=1

[
|α(p)|2

(
λ

(p)
f |g + |µ̂(p)

f |g|
)

+ |ĝ|2 − 2<
(
ĝ∗α(p)µ̂

(p)
f |g

)]
(4.72)

(Again, operations are to be taken componentwise). Equations (4.71) and (4.72) constitute
the body of EM iterations.

Non-uniqueness of the PSF Some comment is indicated concerning the uniqueness of the
recovered PSF. From (4.71) is seems as if the algorithm was estimating amplitude and phase
information of the PSF, the latter one represented by the imaginary part of the eigenvalues
α. However, this proves an unrealistic expectation the algorithm cannot live up to. Here is
why. Clearly the observed image has a pdf proportional to

p(g|θ) ∝ exp(−gH Var [g | θ]−1 g) Var [g | θ] = AΛfA
H + Λν (4.73)
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but the quadratic in g has the Fourier-domain representation

gH(AΛfA
H + Λν)−1g =

|ĝ|2

|α|2 λf + σ2
ν

(4.74)

Note, then, that the spectrum contributes only as |α|2 to the pdf whose maximization we
undertake. In other words, all eigenvalues of equal magnitude have the same likelihood.
One way to resolve this ambiguity is by imposing additional constraints on the PSF. Usually
a zero-phase is assumed, resulting in a symmetric PSF. By setting α ∈ Rmn we also coerce
symmetry of the matrix A, since A = FH∆F = FH∆∗F = AH with ∆ = diag (α). Likewise, a
normalization constraint α1 = 1/

√
mn will have the weights hi satisfy

∑
i hi = 1. Apart from

preserving the signal’s energy it can further help establish uniqueness of the recovered PSF.
In practice, this might be realized by running the algorithm for some time, stop to normalize
the PSF and then start a new cycle. Our experiments with this technique, however, were not
encouraging.

Convergence Rate As to performance, we refer to the already lamented absence of con-
vergence rates for EM-based methods under sufficiently general conditions. Although the
algorithm works exclusively in the Fourier-domain and does not need to constantly switch
between spatial and frequency representation, in all tests it has proved significantly slower
than Richardson-Lucy.
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Implementation As for the previous algorithms, we implement the basic steps in Matlab-
code, given in the listing below

function [f, alpha, delta, k] = blindEM(g, alpha, lambda, sigma2)

%% g blurred image
%% alpha eigenvalues of convolution operator A (OTF)
%% lambda eigenvalues of prior variance
%% sigma2 noise variance (scalar)
%% eta eigenvalues of conditional variance f given g

mn = numel(g);
G = fft2(g);
maxiters = 80;

for k = 1 : maxiters
%% E-step: compute conditional mean and variance
denom = abs(alpha).^2 .* lambda + sigma2;
F = conj(alpha) .* lambda ./ denom .* G;
eta = lambda * sigma2 ./ denom;

%% save old values
lambda old = lambda;
sigma2 old = sigma2;
alpha old = alpha;

%% M-step: update estimates
lambda = eta + abs(F).^2 / mn;
alpha = G .* conj(F) ./ (lambda * mn);
tmp = abs(alpha).^2 .* lambda;
tmp = tmp + (abs(G).^2 - 2*real(conj(G) .* alpha .* F)) / mn;
sigma2 = sum(tmp(:)) / mn;

%% check for convergence
delta(1) = max(abs(lambda(:) - lambda old(:)) ./ abs(lambda(:)));
delta(2) = max(abs((alpha(:) - alpha old(:)) ./ abs(alpha(:)));
delta(3) = max(abs(sigma2 - sigma2 old) / abs(sigma2 old));

if max(delta) < 1e-3
break;

end
end

f = real(ifft2(F));
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4.5 Neelamani (ForWaRD)

With the last algorithm selected for presentation, also the most recent of date, we may say to
come full circle. Not only in the wider sense of a return to non-blind and direct approaches; the
tie-up with the concept of linear filters is indeed almost literal. Seemingly rather traditional
at first sight, the algorithm may be said to realize a genuine contribution by generalizing
the concept to other transform domains. (Hence the fancy camel-case acronym, apparently a
contraction of Fourier-Wavelet Regularized Deconvolution. In honour of its inventor [19] as
much as for simplicity, however, we refer to it as Neelamani)

Motivation and Idea The dilemma of linear filters is the intricate mingling of noise and
signal. If we choose to shrink the contributions of a particular subspace by a factor in rα � 1
we indiscriminately extenuate or suppress both noise and valid information. Likewise, if we
set rα ≈ 1 we are sure to retain good part of the signal — but also most of the unwished-for
noise. This observation may be formalized as follows.

Recall that the mean (integrated) square error can be decomposed into the squared 2-norm
of the bias plus the variances of the leaked, because insufficiently attenuated, noise. For an
arbitrary filter function rα ∈ [0, 1] acting upon the inverted spectrum of the blur operator we
get, by substituting into equation (3.1)

MISE
[
f̂
]

=
∥∥∥(I −A†αA)f

∥∥∥2

2
+ trace

(
A†αΦνA

†H
α

)
(4.75)

This representation can be used to derive a lower bound on the MISE independent from
the choice of filter coefficients. In fact, for any singular value σ in the spectrum of A with
associated right singular vector v it holds that

(1− rα(σ))2 |〈v, f〉|2 + rα(σ)2
E
{
|〈v, ν〉|2

}
σ2

≥ 1
2

min

{
|〈v, f〉|2,

E
{
|〈v, ν〉|2

}
σ2

}
(4.76)

since (1 − rα(σ))2 + rα(σ)2 ≥ 1
2 . By taking the sum over all non-zero σi on both sides in

(4.76) we obtain the inequality

MISE
[
f̂
]
≥ 1

2

r∑
i=1

min

{
|〈vi, f〉|2,

E
{
|〈vi, ν〉|2

}
σ2

i

}
(4.77)

Even for the best conceivable filter coefficients, the MISE of the regularized estimator is lower-
bounded by this quantity. In a way, then, it defines the limits within which a sensible choice
of rα can help to improve the error performance. To make this margin as large as possible
clearly we should strive to minimize the right-hand-side of (4.77). Ideally, of course, we would
have noise and signal lie in different subspaces altogether, resulting in two disjunctive sets
of coefficients. Unfortunately, this is not a realistic expectation. Note that in the case of
AWGN noise ν ∼ N (0, σ2

νI) assumed without loss of generality, for any orthonormal basis
V = (v1, ..., vn) we have E

{
|〈vi, ν〉|2

}
= E

{
V HννHV

}
ii

= σ2
ν and thus a lower bound of

1
2

r∑
i=1

min
{
|〈vi, f〉|2,

σ2
ν

σ2
i

}
(4.78)
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As far as the noise is concerned, therefore, the particular choice of V does not make any
difference. The same is not true, however, for the other term inside the min-operator. For
the signal, typically featuring a high degree of correlation and structure, the choice of an
appropriate basis does matter indeed. In order to keep (4.78) low, it is desirable that the
image have a representation as economic as possible, and be rendered by only few coefficients
〈vi, f〉 6= 0. Whether a basis V is adequate or suitable in this sense obviously depends on the
class of images considered. It will be good for one and less so for others; none will be optimal
for all.

The Fourier-Domain with its sinusoidal kernels turns out to be best for images featuring
gradual rather than abrupt transitions in light-intensities. In fact, the decay in the Fourier
coefficients may be shown to be directly related to the smoothness of f . On the other hand,
images with sharp contrast and singularities are not rendered economically, resulting in a
comparably large number of non-zero coefficients. Here is where the wavelets come into play.
In fact, the ForWaRD algorithm is based on the very observation that wavelet transform
domains are particularly apt for the representation of piecewise but not globally smooth
signals. For a formal description of this class in terms of Sobolev and Besov spaces see the
paper already cited [19] and the references therein.

Wavelet Transform Wavelet-theory by itself is rich and complex material. We only give the
essential idea, sticking to the strictly indispensable. Let φ and ψ be two prototype function
(low-pass scaling and mother wavelet), chosen such that the set of dilated and shifted versions

φj,l(t) = 2j/2 φ(2jt− l) ψj,l = 2j/2 ψ(2jt− l) (4.79)

with parameters j, l ∈ Z comprise an orthonormal basis. Then an arbitrary (one-dimensional)
signal f can be approximated up to a finite resolution by an appropriate linear combination

fJ(t) =
N0∑
l=0

sl φl(t) +
J∑

j=0

Nj∑
l=0

wj,l ψj,l(t) (4.80)

with sl := 〈φl, f〉 and wj,l := 〈ψj,l, f〉 the projections onto the corresponding basis-functions.
(The approximation fJ may be shown to converge to f in L2-norm, as the resolution gets
finer). Just like the Fourier-transform the concept readily extends to higher dimensions and
sampled discrete-time signals. Here 〈φl, f〉 and 〈ψj,l, f〉 basically represent convolution with
low and high- or band-pass filters respectively. An important family of kernels satisfying
orthonormality and vanishing moment constraints is given by the Daubechies coefficient sets;
they were used for the actual implementation.

Concept and Pseudo-Code Implementation With its concept of alternate filtering in
Fourier and wavelet domains — combining and exploiting the specific advantages of either —
the Neelamani approach is essentially hybrid.

To altogether abandon the Fourier-domain is not practical, as it is the only way to efficiently
handle the actual deconvolution. Also, the inferiority in representing images of sharp contrast
is balanced by the fact that colored noise can be rendered very economically. (Note that, once
inverted, the noise is no longer white but strongly correlated). The wavelet-domain, on the
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other hand, can be used in a second step to further attenuate the artefacts due to noise leaked
from the first stage. The choice of filter functions — whether Tikhonov/Ridge Regression,
Wiener or simple thresholding — is arbitrary and at the discretion of the implementor; may
he proceed as he thinks fit. Following the recommendations in the aforementioned paper, a
bit of all has been employed (see below for details).

Since Matlab does not natively support discrete wavelet transform (DWT) we only give
a schematic description using informal pseudo-code. A reference implementation by the in-
ventors (Matlab front-end based on C++ routines by MEX-interface) is hosted by the Rice
University in Houston, Texas and available for download at www.dsp.rice.edu/software.

Step 1: Fourier Domain Filtering

• Regularized operator inversion using Ridge-Regression

rα(σi) =
σ2

i

σ2
i + α

with α set judiciously (moderate amount of regularization)

Step 2: Wavelet Domain Filtering

1. Compute ‘pilot’ estimate

• (Redundant) DWT
– coefficient set: Daubechies 6
– fixed number of decomposition levels

• Hard thresholding (as in TSVD) with

rα(j)(x) =
{

1 |x| > α(j)

0 otherwise
x ∈ {sl, wj,l}

and α(j) an estimate of the noise level at scale j.
• Inverse DWT

2. Compute final estimate

• (Redundant) DWT
– coefficient set: Daubechies 2
– fixed number of decomposition levels

• Wiener Filtering with

rα(j)(x) =
|x|2

|x|2 + α(j)
x ∈ {sl, wj,l}

and α(j) an estimate of the inverse SNR at scale j.
• Inverse DWT
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An important issue is that of balancing the amount of Fourier- and wavelet-filtering controlled
by the regularization parameters, and hence the weight of the two stages relative to each
other. This question is dealt with in the paper [19] to some detail. It should be consulted for
information on how to estimate the optimal parameter configurations for a given setting.

Complexity The complexity of the algorithm is dominated by the two transforms, actually
of order O(n log n). If the redundant variant of the wavelet transform is used, asymptotic
behaviour is worse. However, for most images of customary size it proves sufficient to have a
fixed number of decomposition levels which limits computational and storage cost, otherwise
considerable. Even so, performance is swift compared with the iterative algorithms previously
discussed.
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5 Hardware Adaptation

As many of the best-performing algorithms to date do not fall into the blind category, their ef-
fective use entails the supply of a-priori information about the optical device and the recording
system. Such contextual data, in general, is rarely available. To have the relevant hardware
at our disposition, thus, is a privilege to take advantage of. See table 5.1 for a detailed lists
of components.

In this chapter we discuss different ways of making such a-priori information available. The
first part is concerned with quantifying the impulse response or point-spread-function of the
microscope. Readout noise of the CCD-camera will be dealt with in the second part.

5.1 Microscope PSF

There are different ways to go about estimating the PSF, which could be classified according
to the following scheme

• Empirical approaches attempt to actually measure the point-spread-function, ap-
proximating the Dirac-impulse by a light-source of as little extension as possible. The
idea is straightforward, though possibly not the most challenging from a mathemat-
ical point of view. However, pertaining to the field of photometry rather than data
analysis, this method is usually quite laborious and expensive in terms of material and
equipment.

• Algebraic approaches, most notably represented by [6] and [2], are characterized by
a high degree of mathematical sophistication. While they get along without so much as
the notion of probability, they also fall short of correcting the fundamental ill-posedness
of the problem. An important drawback of this determinism, hence, is their vulnerability
in the presence of noise.

• Probabilistic approaches Many of the so-called blind deconvolution algorithms de-
rived from probabilistic models compute, if only as a necessary by-product in the course
of restoration, an estimate of the PSF. Examples of this class are [22, 23] and the EM-
based algorithm discussed in the previous chapter. However, these methods tend to be

Component Manufacturer or Specification
Microscope Zeiss Axio Imager M1, dry
Lens Zeiss Achroplan 63x, 0,95 numerical aperture
CCD-camera JAI Pulnix TMC-1402 CL (1392x1040 and 800x600)
Lighting LED

Table 5.1: Used Optical Hardware (Microscope plus CCD-camera)
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lacking precision and rarely yield anything more fancy than a Gaussian bell-curve of
slightly bigger or narrower spread.

• Heuristic approaches Given this difficulty of quantifying the PSF exclusively from
the data, it is no surprise that parametric models are still a valuable resource. Based
on the laws of optical physics, they provide a heuristic to predict the PSF under certain
conditions.

In the following we discuss one representative of the latter class in some detail.

Gibson-Lanni Model For microscopy, one of the more sophisticated models at hand is the
one developed by Gibson and Lanni [7]. Due to its high degree of specialization, caution is
indicated when applying it to a scenario other than the one it was originally intended for. For
two reasons, it is impossible to transfer offhand the findings of the paper to our situation:

1. The Gibson model is designed for fluorescence microscopy, as opposed to the light-
transmitting confocal microscope in use at the Fraunhofer Institute of Integrated Cir-
cuits (IIS) where the tests have been conducted.

2. Contrary to the problem considered throughout this work, the Gibson paper and the
model derived therein are concerned with methods of three-dimensional reconstruction,
arising in confocal laser scanning microscopy (CLSM) and optical serial sectioning mi-
croscopy (OSM), all of which require that multiple samples of the specimen be available.

It is important to bear in mind these differences which compromise a one-to-one applicability
to the present case. We say this in justification of the unorthodox use we are going to make
of it. Rather than taking all slots literally, we use it as a heuristic to parameterize a subset of
point-spread-functions and reduce the amount of unknowns to a — hopefully — manageable
number. Then, starting with a set of given hardware parameters, a local optimization will be
conducted to approximate the best fitting PSF.

The Gibson model describes the PSF as a radial symmetric intensity distribution varying
as a function of defocus ∆z. We do not undertake to derive the formulae, as a conscien-
tious discussion is beyond the author’s competence. The reader interested in the background
information is referred to the paper already cited above and the numerous references therein.

The calculation involves an impressive amount of parameters, whose number is further
increased — in fact nearly doubled — by distinguishing between actual and ideal values for
many of them. Parameters denoting the values in the design system under ideal conditions
are decorated with an asterisk. A explanatory list is given below (see also figure 5.1 for a
schematic description)

For its essential part, the Gibson model may be reduced to the following equations. Let
k = 2π/λ the wave number and

W (ρ,∆z) = ts
√
n2

s − (Aρ)2 + tg

√
n2

g − (Aρ)2

− t∗g

√
n∗g − (Aρ)2 − t∗i

√
n∗2i − (Aρ2)

+
[
∆z + ni

(
t∗g
ng

+
ti
n∗i
− ts
ns
− tg
ng

)]√
n2

i − (Aρ)2

(5.1)
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Parameter Meaning
A Numerical Aperture
M Magnification
ti Depth of the immersion medium
ni Refractive index of the immersion medium
tg Depth of the coverslip
ng Refractive index of the coverslip
ts Depth of the ROI in the specimen
ns Refractive index of the specimen
λ Wavelength of the light

Table 5.2: Parameters in the Gibson-Lanni Model

specimen

coverslip

immersion medium

region of interest
?

6

?

6
?

6
?∆z

0

Optical Axis

ts

tg

ti

Figure 5.1: Longitudinal cut through the different strata of the optical path

the optical path difference (OPD) provoking phase aberrations. Then the intensity emanating
from a point-light-source in the region of interest of the specimen and sensed by a detector
at distance (radius) ρ in the image plane is given by the following integral, derived from
Kirchhoffs diffraction formula

I(r,∆z) ∝
∣∣∣ ∫ 1

0
J0

(
kr
√
M2 −A2 ρ

)
· eikW (ρ,∆z) · ρ dρ

∣∣∣2 (5.2)

where

Jα(x) =
1
2π

∫ π

−π
eı(αt−x sin t) dt (5.3)

the Bessel function of the first kind.

Implementation Our implementation had to overcome several obstacles related to the nu-
merical evaluation of the integral (5.2), the most important one being insufficient performance.
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Although the adaptive Simpson quadrature quad.m that ships with Matlab is suitable for
most purposes, it turned out to be prohibitively slow in this particular case. For some reason
that we have not been able to fully track down, the routine either produced unacceptably
inaccurate results or — with smaller tolerance — took around 40 seconds of computation time
for one PSF (63x63 pixels, requiring approximately 45 integral evaluations), which was judged
impractical for the optimization procedure with several hundreds to thousands of function
calls. All calculations were performed on an Intel Pentium 4 with 3 GHz and 512 MB memory.
The same problem arose when using GNU Octaves quad.m, which serves as a front end to the
Fortran integration package Quadpack, worsened furthermore by the function’s inability to
handle complex integrals.

To altogether abandon the convenient scripting languages, however, would have meant
to forfeit a precious instrumentarium for subsequent optimization. As a viable expedient,
finally, it was chosen to implement the actual quadrature in plain C or C++, using the MEX
and OCT interfaces and conduct the optimization in Matlab/Octave as originally intended.
By eliminating this performance bottleneck, the computation time for one PSF could be
successfully reduced to a fraction of a second.

Figure 5.2 shows some intensity distributions as defined by (5.2), computed by numerical
evaluation of the intergral for different values of ∆z and otherwise arbitrarily chosen but
constant parameters.

Figure 5.2: PSFs of varying defocus as predicted by the Gibson-Lanni model

Execution To assess how well a model-generated PSF approximates the actual impulse re-
sponse of the microscope, the following approach was adopted. Given a pair of images, one of
them in-focus (as much so as one can realistically hope for by manual calibration), the other
deliberately out-of-focus but otherwise displaying exactly the same region of interest in the
specimen, it is clear that the latter represents a degraded version of the former. Now let f and
g denote sharp and blurred image respectively. To quantify the goodness of fit of a particular
PSF, say h, we would convolve the focused image with the generated PSF and compare the
result with the ‘naturally’ blurred out-of focus image. As cost function the square error

φ(h) = ‖f ∗ h− g‖22 (5.4)

was chosen, with (∗) denoting convolution. Figure 5.1 shows the image pair used in this way,
each of size 300x300 pixels. The start values for the iterations are given in the table 5.3 below,
where ‘ideal’ and ‘actual’ parameters are assumed to be identical.

62



CHAPTER 5. HARDWARE ADAPTATION

Parameter Start Value
A 0.95
M 63.0
ti 0.19× 10−3

ni 1.0
n∗i 1.0
tg 0.17× 10−3

t∗g 0.17× 10−3

ng 1.515
n∗g 1.515
ts 20.21× 10−9

ns 1.46
λ 520.0× 10−9

∆z 0

Table 5.3: Start values for local optimization

Figure 5.3: Image pair, focused and defocused, used for optimization

Local optimization was performed using Matlabs fminsearch.m, based on the Nelder-
Mead simplex algorithm. The iterates finally converged to the local minimizer of (5.4) whose
values are given in table 5.4.
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Parameter Final Value
A 0.97
M 30.856
ti 0.328× 10−3

ni 1.015
n∗i 1.010
tg 0.168× 10−3

t∗g 0.215× 10−3

ng 1.264
n∗g 1.248
ts 1.78× 10−5

ns 1.589
λ 586× 10−9

∆z 2.177× 10−3

Table 5.4: Local minimizer of the MSE cost function

Some of the values appear reasonable at first sight. A more careful examination, however,
reveals that they are either trivial or nonsense. A defocus of more than one millimeter, in
particular, is somewhat gross. Having mentioned, with utmost candour, the most palpable
improbability, one will kindly exempt us from commenting any further on the results. We
repeat, though, that from the very outset we used the model as a heuristic to parameterize a
subset of intensity distributions rather than interpret all slots strictly on the grounds of their
physical meaning.

Figure 5.4: Best fitting PSF (logscale intensities)

To be sure, we also tried searching on a global scale for a minimum of (5.4). For this
purpose simulated annealing, as provided by the function samin.oct in the package Octave
Forge, was used — to no avail, though. To make the problem manageable and increase the
odds of a successful termination, the dimensionality of the search space was drastically reduced
by fixing up to 6 parameters. Even so, the routine failed to converge after 104 evaluations
and more than 24h of computation time.
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5.2 CCD-Camera Noise

Consistent with the assumption of Gaussianity — and hence a distribution completely spec-
ified by the first two moments —, we shall seek to establish a second order statistic of the
noise random process. Estimating the covariances, in particular, represents a major challenge
here.

Idea Given an ensemble of, say, 100 darkframe images of size 800x600 each, an obvious way
to go about a statistical analysis would be to construct the sample covariances from the data.
(Even if the frames are captured with small temporal distance from each other, we shall assume
them to be independent and identically distributed, thus neglecting a possible correlation
along the temporal axis.) While this approach would permit, in principle, a verification of
wide-sense-stationarity — one of the more axiomatic assumptions our noise model is based
upon — the statistical significance of such an experiment is severely compromised by the
scarcity of samples. We briefly elaborate this point. If we let k denote the number of
available observations, then the sample covariance matrix can be represented as a sum of
as many rank-one-updates

C =
1

k − 1

k∑
i=1

(νi − ν)(νi − ν)H (5.5)

where the sample mean ν of the random process is defined as

ν =
1
k

k∑
i=1

νi (5.6)

From (5.5) it is evident that rank(C) ≤ k is bounded by the number of contributing samples.
For the true variance matrix, however, we generally have rank(Λν) = mn, where mn is the
size of one observation, and rank(Λν) < mn if and only if two components are perfectly
correlated by a virtual determinism such that

ρ =
Cov

(
ν(x,y), ν(ξ,η)

)√
Var

[
ν(x,y)

]
Var

[
ν(ξ,η)

] ∈ {−1, 1} (5.7)

for some (x, y), (ξ, η) ∈ {1, ...,m} × {1, ..., n}.

Now, to yield a meaningful approximation to the real covariances, we should require the
number of observations contributing in (5.5) to exceed the size of one observation. Given
the actual resolution of 800x600 pixels, however, we will inevitably have k � mn = 480000
if the problem is to remain tractable. In other words, (5.5) is poorly determined by the
few observations that happen to be at hand. Whatever the outcome of such an experiment,
without sufficient backing from the data to sustain and substantiate it, our findings will
remain challengeable at best.

Lacking an adequate amount of samples to either refute or verify wide-sense-stationarity
with sufficient authority, we may just as well take it for granted and make it work for us.
It stands to reason that incorporating a-priori knowledge into the estimator makes for more
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accurate results with significantly fewer observations. In fact, we will show that the WSS-
assumption can be used to improve the general purpose covariance estimate (5.5) by a sub-
stantial factor.

In order to address the aforementioned issues arising whenever

dim(ν) � k (5.8)

with k the number of available iid samples, we propose two covariance estimators applica-
ble to large-scale problems where the random process is known to be wide-sense-stationary.
We begin with a formal proof of unbiasedness before we present an efficient Matlab im-
plementation using Fast Fourier Transform (FFT) in a subsequent paragraph. Finally, the
theoretical findings are confirmed and corroborated by numerical simulation, showing that
for WSS-processes the proposed method indeed largely outperforms the general purpose es-
timator (5.5).

WSS-covariance Estimators

WSS Covariance Estimator (1). Let ν ∈ Rm×n be a wide-sense stationary random process
with

∀x, y : E
{
ν(x,y)

}
= µν (5.9a)

E
{
ν(x,y) · ν(ξ,η)

}
= Rνν(x− ξ, y − η) (5.9b)

Let further ν1, ..., νk be a sequence of k independent and identically distributed observations.
Define

Sij =




x
ξ
y
η

 ∈ {1, ...,m}2 × {1, ..., n}2
∣∣∣ ( x− ξ

y − η

)
=
(
i
j

) (5.10)

to be the set of index-pairs representing components located at (two-dimensional) distance
(i, j) from each other. Finally let

ν =
1

mnk

∑
l

∑
x,y

ν
(x,y)
l (5.11)

denote the sample mean formed by averaging over the components of all observations. Then

Rij =
1

k · |Sij |
∑∑

(x,ξ,y,η)∈Sij

1≤l≤k

ν
(x,y)
l ν

(ξ,η)
l (5.12)

and

Cij = Rij −
kν2 + 1/(m2n2)

∑
x,y|Sxy|Rxy

k + 1
(5.13)

are unbiased estimators for Rνν(i, j) and the corresponding covariance Cνν(i, j) = Rνν(i, j)−
µ2

ν respectively.
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Proof: Due to the linearity of the expectation operator, it clearly holds that E
{
Rij

}
=

Rνν(i, j). To see the second statement, we take a closer look at

E
{
ν2
}

=
1

m2n2k2
E

∑
s,x,y

∑
t,ξ,η

ν(x,y)
s · ν(ξ,η)

t

 (5.14)

Since the samples are independent and therefore mutually uncorrelated we find that

E
{
ν(x,y)

s ν
(ξ,η)
t

}
=

{
µ2

ν s 6= t

Rνν(x− ξ, y − η) s = t
(5.15)

The former case occurs m2n2(k2 − 1) times in the sum of (5.14), the latter the remaining
m2n2k times. Thus we have

E
{
ν2
}

=
k − 1
k

µ2
ν +

1
m2n2k

∑∑
x,y,ξ,η

Rνν(x− ξ, y − η)

= µ2
ν +

1
m2n2k

∑∑
x,y,ξ,η

Cνν(x− ξ, y − η)
(5.16)

where Cνν = Rνν − µ2
ν is the (auto-)covariance function of the process. Now consider that S

defines a partition on I2 where I = {1, ...,m}×{1, ..., n} is the set of two-dimensional indices.
In other words, each index-pair is element of exactly one equivalence class Sij . In particular,
it holds that

∑
ij |Sij | = m2n2. Since Cov

(
ν(x,y), ν(ξ,η)

)
= Cνν(i, j) for all (x, y, ξ, η) ∈ Sij

summing over all index-pairs in (5.16) is equivalent with the sum over the sets Sij weighted
with their cardinality. Hence for a provisional covariance estimator Ĉij = Rij − ν2 we obtain

E
{
Ĉij

}
= Rνν(i, j)− µ2

ν −
1

m2n2k

∑
x,y

|Sxy|Cνν(x, y)

= Cνν(i, j)−
1

m2n2k

∑
x,y

|Sxy|Cνν(x, y)
(5.17)

If we stack the components of Ĉ and Cνν vertically and denote by |S| the vector formed of
the cardinalities |Sij | we may write (5.17) as

Ĉ = (I + U) · Cνν (5.18)

where

U =
1

m2n2k

 . . . |S|T . . .
...

. . . |S|T . . .

 (5.19)

is a rank-one matrix with replicate rows. Evidently, Ĉ has bias UCνν . Note also that an
unbiased estimator is implicitly given by the following system of linear equations

C = (I + U)−1Ĉ (5.20)
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which is impractical for a concrete implementation due to its huge dimension of order
O(m2n2). However, it turns out that (5.20) can be solved efficiently with much less effort
from the following observations. Let d = dim(Ĉ) denote the number of equations in (5.20)
and, purely for notational convenience, S′ = 1/(m2n2k)|S| an appropriately scaled instance
of the vector holding the cardinalities of the equivalence classes. Then from

Cij + 〈S′, C〉 = Ĉij (5.21)

we get, by summing over all i, j

0 = 〈1, Ĉ〉 − 〈1, C〉 − d · 〈S′, C〉

= 〈1, Ĉ〉 − 〈1 + dS′, C〉
(5.22)

On the other hand we find, likewise from (5.21), that C = Ĉ − α1 with α = 〈S′, C〉. Substi-
tuting into (5.22) yields

0 = 〈1, Ĉ〉 − 〈1 + dS′, Ĉ − α1〉

= d ·
(
α− 〈S′, Ĉ〉+ α〈S′, 1〉

) (5.23)

By solving for α we finally get

α =
〈S′, Ĉ〉

〈S′, 1〉+ 1
=
〈|S|, R− ν2〉
m2n2(k + 1)

=
1/(m2n2)〈|S|, R〉 − ν2

k + 1
(5.24)

where the identity 〈|S|, 1〉 = m2n2 has been used. Hence the unbiased estimator has the
explicit representation

Cij = Rij − ν2 − α

= Rij −
kν2 + 1/(m2n2)

∑
x,y|Sxy|Rxy

k + 1

(5.25)

as claimed. �

Being, essentially, the unnormalized auto-correlation of the random process with retroactive
mean-subtraction, the above estimator can be efficiently implemented using FFT. We give a
reference implementation in Matlab-code which should speak for itself. It is self-contained
except for the outsourcing of the i/o part into the separate function load sample for the sake
of readability. Anticipating a variant that is covered in a later paragraph, the function takes
a boolean parameter specifying whether or not the variance matrix has symmetric Toeplitz-
blocks.
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function [mu, C] = wss estim1(k, m, n, STB)
%% unbiased wss covariance estimator (1)

%% k number of iid samples to evaluate
%% m x n size of one observation
%% STB symmetric block Toeplitz variant

mu = 0;
R = zeros(2*m-1, 2*n-1);

for l = 1 : k
s = load sample(l, [m, n]);
mu = mu + sum(s(:));
s(2*m-1, 2*n-1) = 0;
R = R + real(ifft2(abs(fft2(s)).^2));

end

mu = mu / (m*n*k);

%% enforce axial symmetry for STB variant
if STB

R(2:end,2:end) = (R(2:end, 2:end) + R(2:end, end:-1:2)) / 2;
R(2:end,2:end) = (R(2:end, 2:end) + R(end:-1:2, 2:end)) / 2;

end

%% normalize and solve implicit equation
S = [m:-1:1,1:m-1].’* [n:-1:1,1:n-1];
T = sum(R(:)) / (m^2*n^2*k);
C = R ./ (k*S) - (k*mu^2 + T)/(k+1);

We note as an aside that due to a well-known property of the Fourier-Transform, it holds
that

∑
xy|Sxy|Rxy = 1/k

∑
l ‖νl‖2, where ‖ · ‖ is either the 2-norm or the Frobenius norm

depending on whether we choose to regard νl as a column-vector or a matrix. However, since
we need to calculate the FFT anyway, this identity, while looking more straightforward, does
not reduce the overall-complexity of the algorithm.

For comparison, we give another covariance estimator, likewise unbiased. In contrast to
the one developed above, normalization is done ‘in place’, resulting essentially in the auto
correlation of the mean subtracted process.
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WSS Covariance Estimator (2). Suppose the conditions as described in (5.9a) hold with,
again, k iid sample observations ν1, ..., νk. Define

νl =
1

mn (k − 1)

∑
s 6=l

∑
x,y

ν(x,y)
s (5.26)

to be the leave-out-one sample mean, formed by averaging over all observations but one. Let
further

Ĉij =
1

k · |Sij |
∑∑

(x,ξ,y,η)∈Sij

1≤l≤k

(ν(x,y)
l − νl)(ν

(ξ,η)
l − νl) (5.27)

Then

Cij = Ĉij −
∑

xy|Sxy|Ĉxy

m2n2k
(5.28)

is un unbiased estimator for the auto-covariance Cνν(i, j).

Proof: Let i, j be fixed. For each (x, ξ, y, η) ∈ Sij we have

E
{
ν

(x,y)
l νl

}
=

E
{
ν

(x,y)
l

∑
s 6=l

∑
ξ,η ν

(ξ,η)
s

}
mn(k − 1)

= µ2
ν (5.29)

due to the independency of the observations. On the other hand,

E {νlνl} = µ2
ν +

∑
xy|Sxy|Cνν(x, y)
m2n2(k − 1)

(5.30)

Therefore

E
{
Ĉij

}
=

1
k|Sij |

E
{

(ν(x,y)
l − νl)(ν

(ξ,η)
l − νl)

}
= Cνν(i, j) + µ2

ν − 2µ2
ν + µ2

ν +

∑
xy|Sxy|Cνν(x, y)
m2n2(k − 1)

(5.31)

or, equivalently, looking at the whole system and using matrix vector notation

E
{
Ĉ
}

= (I + U) · Cνν (5.32)

with

U =
1

m2n2(k − 1)

 . . . |S|T . . .
...

. . . |S|T . . .

 (5.33)

From (5.20) and following we know that the solution of C = (I + U)−1Ĉ is given by

C = Ĉ − 〈|S|, Ĉ〉
〈|S|, 1〉+m2n2(k − 1)

= Ĉ − 〈|S|, Ĉ〉
m2n2k

(5.34)

Then, clearly, we have

E
{
C
}

= (I + U)−1 E
{
Ĉ
}

= Cνν (5.35)

�

70



CHAPTER 5. HARDWARE ADAPTATION

Again, we provide a reference implementation as a Matlab function with the same sig-
nature as above. We repeat that the actual reading of the samples, for being alien to the
problem of interest, has been omitted in the listing below.

function [mu, C] = wss estim2(k, m, n, STB)
%% unbiased wss covariance estimator (2)

%% k number of iid samples to evaluate
%% m x n size of one observation
%% STB symmetric block Toeplitz variant

%% calculate leave-out-one sample means
mu = zeros(k, 1);
for l = 1 : k

s = load sample(l, [m, n]);
mu(l) = sum(s(:));

end
mu = (sum(mu) - mu) / ((k-1)*m*n);

%% calculate sample correlation via FFT
C = zeros(2*m-1, 2*n-1);
for l = 1 : k

s = load sample(l, [m, n]);
s = s - mu(l);
s(2*m-1, 2*n-1) = 0;
C = C + real(ifft2(abs(fft2(s)).^2));

end

%% sample mean
mu = sum(mu) / k;

%% enforce axial symmetry for STB variant
if STB

C(2:end,2:end) = (C(2:end, 2:end) + C(2:end, end:-1:2)) / 2;
C(2:end,2:end) = (C(2:end, 2:end) + C(end:-1:2, 2:end)) / 2;

end

%% normalize and solve implicit equation
S = [m:-1:1,1:m-1].’ * [n:-1:1,1:n-1];
C = C ./ (k*S) - sum(C(:))/(k^2*m^2*n^2);
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STB-Variant From its very definition it is clear that the unnormalized auto-correlation for
any random process is point-symmetric about the origin, such that

Rνν(i, j) = Rνν(−i,−j) (5.36)

holds. Stating that covariance matrices are symmetric, then, is a rather trivial remark.
Slightly more interesting is the case where this property supervenes in combination with
wide-sense-stationarity of the process to induce a symmetric block Toeplitz structure with
Toeplitz blocks (SBTTB)

Λν =



C1 C2 . . . Cn

CT
2 C1 C2

...
... CT

2 C1
. . .

...
...

. . . . . . C2

CT
n CT

2 C1


(5.37)

Due to the symmetry of Λν we certainly have C1 = CT
1 , but the same need not be true for the

remaining blocks. Further simplification of the model, thus, might start right here. In fact,
from wide-sense-stationarity it is not a far step to enforcing symmetry of all Ci, resulting in
a covariance matrix that is SBTSTB. Note that this corresponds to the axial symmetry of
the auto-correlation function Rνν(i, j) = Rνν(−i, j), which in combination with (5.36) also
coerces symmetry along the other axis. This assumption can be argued on the grounds that
the Euclidean distance is the same in either case. In a way, then, we abide with the logic
of wide-sense-stationary, albeit with a different concept of distance. One of the convenient
side-effects, by the way, is to reduce the number of defining parameters in (5.37) to mn or,
equivalently, the size of one observation.

In this paragraph we present a variant of the above estimator suitable for WSS-processes
where

E
{
ν(x,y) · ν(ξ,η)

}
= Rνν(|x− ξ|, |y − η|) (5.38)

All that needs to be done, in fact, is change the definition of the equivalence classes (5.10)
into

S
(STB)
ij =




x
ξ
y
η

 ∈ {1, ...,m}2 × {1, ..., n}2
∣∣∣ ( |x− ξ|

|y − η|

)
=
(
i
j

) (5.39)

the remaining formulae retain their validity. Note that the sets’ cardinalities vary as a function
of to the model type

|Sij | = |m− i||n− j| |S(STB)
ij | =

{
|Sij | · 2(2−δ(i,0)−δ(0,j)) i, j ≥ 0

0 otherwise
(5.40)

with δ(i, j) the Kronecker delta. To keep the implementation as simple as possible, it has
been chosen to always return a full matrix of estimated covariances, with entries corresponding
to lags −(m − 1), ..., (m − 1) in the first and −(n − 1), ..., (n − 1) in the second dimension,
regardless of redundancy.
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Error Performance Though a rigorous analysis of the mean-square-error performance is
somewhat tedious and has not yet been accomplished, it is important to highlight some
aspects concerning the accuracy of the derived WSS-estimators. Lacking, for the time being,
a precise quantification of the error, we propose the following heuristic model, to be tested,
subsequently, by numerical simulation. For each p = (x, ξ, y, η, l) ∈ Sij × {1, ..., k} with fixed
i, j define Xp := (ν(x,y)

l − ν)(ν(ξ,η)
l − ν). Then, clearly

Cij ≈
1

k |Sij |
∑

p

Xp = X (5.41)

The sample mean over a population X comprised of k iid observations is known to have the
variance

Var
[
X
]

=
σ2

X

k
(5.42)

wiht σX =
√

Var [X] and hence a standard deviation proportional to k−1/2. Now, if the
random process is Gaussian, all Xp are identically distributed, but — in general — they
are not independent. This motivates the following bounds on the standard deviation of the
WSS-estimates

σX√
k |Sij |

≤
√

Var
[
Cij

]
≤ σX√

k
(5.43)

since only k out of the total of k|Sij | samples are truly independent. In particular, the
inequalities (5.43) suggest a convergence rate of k−1/2. So while the WSS-estimates have the
same asymptotic behaviour as the general purpose estimator (5.5), for any fixed number of
samples we can hope to be up to

√
|Sij | times more accurate, depending on the actual amount

of correlation among the components.

In support of such reasoning we are going to present results obtained by numerical simu-
lation. To this effect, the two WSS-covariance estimators (5.13) and (5.28) have been tested
on synthetically created data obeying a known distribution. In order to randomly generate
the covariance matrix of a wide-sense-stationary process, the following lines of Matlab code
were used with m = n = 32

%% create SBTSTB variance matrix of size (mn)x(mn)
%% with randomly generated entries

Lambda = zeros(m*n);
T = toeplitz(1:n);
for l = 1 : n

Lambda = Lambda + ...
kron(sparse(T==k), toeplitz(rand(m, 1)-0.5));

end

%% make sure that Lambda is positive definite
Lambda = Lambda + (0.1+rand() - min(eig(Lambda))) * speye(m*n);
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Positive definiteness was ensured by adding an appropriate multiple of the identity matrix.
Then a normally distributed sequence, comprised of 500 independent samples, was generated
as follows

%% calculate standard deviation sigma and define mean mu
sigma = chol(Lambda)’;
mu = rand();

%% generate and store samples
for l = 1 : k

s = sigma * randn(m*n,1) + mu;
store sample(s, l);

end

By applying the previously discussed estimators for different values of k and subsequent
reconstruction of the covariance matrices from their return values we can hope to obtain an
eloquent assessment of the error performance. Results are displayed in figure 5.5 (dependency
on variation in the number of samples k) and 5.7, showing the absolute error as function of
the spatial coordinates i, j for fixed k.
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Figure 5.5: Relative Error of Covariance Estimators (in %)

The graphs represent the normalized difference between estimated and actual variance ma-
trices

∥∥Λν − Λν

∥∥
2
/ ‖Λν‖2 as a function of evaluated samples. Note that ν1, ..., ν500 ∈ R32×32
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is an iid Gaussian sequence with Var [ν] = Λν ∈ R1024×1024 the randomly generated SBT-
STB matrix (Symmetric Block Toeplitz with symmetric Toeplitz Blocks). The curves have
an average slope of −1/2 on the logscale plot, thus confirming the presumed proportionality
in (5.43). In perfect accordance with the prognostic also, the three trajectories run roughly
parallel to each other, where the smaller intercept suggests that the two WSS-estimators are
more accurate by a constant factor.

The upper diagram in figure 5.7 shows a cross-section through the spatial coordinates i, j
of the estimate after evaluating the total of 500 samples, showing the absolute error as a
function of two-dimensional lag. As expected, it is roughly proportional to

√
|Sij |. To make

this behaviour more apparent, compare with the surface-plot below.

Summarizing the above, we conclude that numerical simulation both confirms the superi-
ority of the proposed WSS-covariance estimators over (5.5) and gives strong reason to believe
that the bounds (5.43) on the standard deviation formulated ad hoc and without proof are
correct.

Application to the Real Data According to figure 5.5 the second WSS-estimator (5.28)
boasts the best overall performance. For the analysis of the 100 darkframe images, recorded
by a commercially available standard CCD camera with a resolution of 800 by 600 pixels,
this was our method of choice. The results are documented in figure 5.6 showing a perfectly
uncorrelated ‘white’ noise with a peak only at lag (0, 0) corresponding to the variance σ2

ν and
approximately zero otherwise.

Figure 5.6: Autocorrelation of CDD-camera Noise

This is a dull result, no doubt about it, especially after making an effort to derive a reasonably
good estimator. To go at such lengths only to find, in the end, that the noise is as innocently
white as can be, was maybe not worth it. A (cold) comfort, then, is the full validation of the
model assumption. Just as in the past, we continue to set Λν = σ2

νI, but — and this makes
a difference after all — henceforth with clear conscience.
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Figure 5.7: Absolute error as a function of 2D-lag and predicted standard deviation
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6 Evaluation

In this chapter we present and evaluate the results obtained by the implemented algorithms
Wiener Filter, Richardson-Lucy, Blind Expectation Maximization and Neelamani, in the fol-
lowing referred to as WF, RL, BEM and NM respectively.

6.1 Synthetic Data

Experiment Setup In order to measure the quality of restoration by an objective criterion,
a first sequence of tests were performed on synthetic data. For this purpose we convolved an
authentic and reasonably sharp picture showing blood cells — in the following referred to as
f — with the Gaussian OTF

hθ(r) = exp
(
−θ r

5
3

)
θ = 0.005 (6.1)

where r =
√
u2 + v2 and (u, v) the two-dimensional frequency.

Robustness being an important aspect for the evaluation, different levels of white Gaussian
noise were simulated by adding an appropriate random vector νσ with variance σ2. Condi-
tions range from ideal (i.e noise-free) to worst-case, the latter one represented by a standard
deviation σ = 5 for intensities in [0, 255] or, equivalently, a signal-to-noise-ratio of

SNR = 10 log10

‖f‖22
‖ν‖22

= 20 log10

‖f‖2
‖ν‖2

≈ 32.5 dB (6.2)

The synthetic test-image for a given noise-level σ thus is obtained as

g(σ) = f ∗ h+ νσ (6.3)

For succinctness and to avoid inflating this chapter unnecessarily with dull material of little
significance, we restrict ourselves to the extremal cases

σ =
{

0 blurred
5 blurred and noisy

(6.4)

The corresponding test-images g(0) and g(5), 512x512 pixels in size, are shown in figure 6.1.

Error Metric Each of the four computed estimates f̂ ∈ {f̂WF , f̂RL, f̂BEM , f̂NM} was evalu-
ated according to the following metric

d(f, f̂) =
∥∥∥f̂(g(σ))− f

∥∥∥2

2
/dim(f) (6.5)
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Figure 6.1: Synthetically blurred test-image, noise-free (left) and corrupted (right)

With a term that strikes us as unfortunate, this quantity is sometimes referred to as mean
square error (MSE), ‘mean’ denoting average over the two spatial dimensions of the image.
To avoid confusion, we stick with the stochastic acceptation of ‘mean’ as expectation or first
moment of a random variable and prefer to speak of average square error (ASE) instead.
However, what exactly shows up in the denominator — ‖f‖22 would be another candidate for
that matter — is of little consequence so long as we evaluate all competitors on the same set
of data.

Figure 6.2: ASE Performance (diagram)
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Test-image WF RL BEM NE
Blurred 22.2589 24.3831 148.6752 21.9385
Blurred& Noisy 47.903 68.1796 207.6493 56.551

Table 6.1: ASE Performance (figures)

Performance Figure 6.2 shows the ASE performance for each of the evaluated algorithms.
The exact figures may be looked up in table 6.1, while the restored images are given in the
appendix, arranged synoptically for convenient assessment.

With an average square error up to seven times as big as the rest, the blind EM algorithm
is not competitive. Taking into account the difficulty of estimating the pristine image without
precise knowledge of forward-mapping, this result can hardly surprise. As for the three re-
maining ones, performance under ideal conditions is very similar and does not exhibit marked
differences. Though Richardson-Lucy seemingly falls behind with a slightly greater ASE, this
is most likely due to premature halting of the algorithm after 50 iterations, which corresponds
to approximately 40 seconds processing time on a Pentium 4 with 3Ghz. Convergence, it has
already been said, is rather slow and only desirable in the absence of noise. Running more
one minute for a greyscale-image of size 512x512 the blind EM algorithm is also the costliest
among the four which makes its poor performance all the more disappointing. In this regard
the two direct approaches, and in particular the Wiener Filter, are difficult to get ahead
of. Relating cost to efficiency, this latter one is indeed unrivalled with roughly 3 seconds of
computation time.

All algorithms prove to be fairly robust to noise. Considering the ill-posedness of the inverse
problem this is a remarkable result in itself, owed to the regularization techniques discussed
in chapter three. It is clear that in a noisy environment loss of information occurs that no
algorithm will ever be able to make up for. Complete restoration, then, is not a realistic
expectation. But it is the hallmark of a robust algorithm to allow for such loss and to ensure
that deterioration is gradual rather than abrupt. In this regard all four algorithms can be
said to be well-behaved.

The difference between the two direct approaches — Wiener Filter and Neelamani — was
not as pronounced as expected or even completely inexistent in most of the tests that were
conducted with microscopic images. The specific advantage of Neelamani over the Wiener
Filter being the ability to cope with singularities and sharp contrasts in the image, this
potential benefit did not show to advantage for the smooth images used in the experiment.

6.2 Real-World Data

Experiments with mock data as in the previous section are legitimate and necessary, allowing
an objective quantification of the performance under controlled conditions. The true touch-
stone for any implemented method, however, will always be its application to the real-world
data it was conceived for in the first place. For two reasons, though, evaluation is more diffi-
cult. To begin with, there is no pristine image at hand to evaluate against. Any judgement,
then, will have to rely exclusively on visual impression, lacking authoritative figures to sustain
it. Moreover, the blur-kernel being unknown, a lucky guess often is crucial for success.
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In the following we present another sequence of tests conducted with two authentic images
featuring different degrees of out-of-focus blur (shown in figure 6.3). One is extremely poor in
detail — an intrinsic property worsened by the effect of blur; the other represents the pristine
object f from which the test-images of the previous section were generated.

Figure 6.3: Authentic test-images with different degree of out-of-focus blur

For the left image featuring a decent amount of blur a Bessel OTF was assumed with

h(r) =

 1 r =
√
u2 + v2 = 0

J1(0, θ r)
θ r

otherwise
θ = 0.04 (6.6)

with J1 the Bessel function of the first kind. For the nearly sharp image on the right-hand-side
we chose the Gaussian OTF already given in (6.1) with parameter θ = 0.001 modelling very
modest out-of-focus blur.

The results for the left-hand-side image (see figure A.6 in the appendix) are sobering and
cannot convince. For hard we have tried, substantial improvement was not observable. We
may take credit for our sincerity by showing the limits of what is feasible. (Why conceal it,
after all? The algorithms, it will have been noted, are not ours; we sure won’t take the blame
for a possible failure). Slightly better are the results for the right-hand-side image, where
details could be recovered to a certain, limited, extent. (See figure A.8 in the appendix)
Explaining the unequal outcome with a more or less well-fitting PSF respectively, this points
out, once again, the crucial importance of a-priori information.
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7 Conclusion

The purpose of this thesis was to provide some insight into image deconvolution and to
review the more important approaches that have crystallized in this area of research over the
years. The evaluation, finally, was to investigate their aptitude for application in microscopy,
exploring individual strengths and limitations of each. The good news, certainly, is that
effective restoration does not necessarily have to be expensive. Rather than mathematical
sophistication it is the adequate parameters which turned out to be crucial for success. This
result reflects an intuitive truth which we have insistently tried to bring across. In fact, where
the solution is not well-determined by the data, an accordingly important role devolves upon
the incorporation of a-priori knowledge. While the question of how to enforce regularization
constraints is satisfactorily answered in theory, the actual acquisition of such knowledge — the
model problem — very often remains challenging in practice. Our contribution, here, was to
devise a novel covariance estimator for large-scale WSS random-processes which tackles some
of the pratical limitations observed in conventional approaches. This way a more accurate
modelling of CCD-camera noise could be achieved.

Clearly, much has evolved since the time where ill-posed or inverse problems were considered
mere anomalies of no particular interest. Ever since, starting essentially with Tikhonov, this
area of research has witnessed a significant increase in publications. Today, a vast literature
is available both off- and online. A Google search for the keyword ‘inverse problem’ currently
lists more than 5 million items — an eloquent number, if this is to be any indication. (This
is not just rhetoric. To be sure, we have not checked all sites, but we will not deny owing
much to them, either; see the bibliography for some links.)

As always, the linear kind represents a particularly amenable subset within the much more
comprehensive class of inverse problems, being easy to handle as much in theory as in practice.
Due to their relative simplicity, they are also particularly well-investigated. From the student’s
perspective, then, there are two sides of the medal. Competing with decades of high-profile
research, substantial contributions and scientific progress are comparably difficult to realize.
On the other hand, beyond the hunt for patents and glorious publications, it is rewarding for
its universality and practical relevance in many real-world-applications.Doubtlessly, image
deconvolution and related technologies like computer tomography have had their share in
promoting advance, but most of the math is not specific to this field of application. Whether
it happens to be an image whose estimate is sought has little importance after all. Extending
the scope to non-linear problems it could be the interior of the earth measured by means of
seismic waves, the organs of a patient absorbing X-rays in computer tomography and many
things more.

In other words, it pays to systematically investigate the abstract concepts behind a partic-
ular algorithm, and dedicate an adequate amount of time and space elaborating them. We
hope, in this regard, that the third chapter on robust parameter estimation is more than
just a lengthy digression. Our purpose, there, was to embed image deconvolution within its
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broader mathematical context. If this should have transcended the immediate use case and
eventually permit a generalization to other fields of applications, we think it was worthwhile.
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A Appendix
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Figure A.1: Above: pristine image, below: blurred
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Wiener Filter (WF)
ASE = 22.2589

Blind Expectation Maximization (BEM)
ASE = 148.6752

Richardson-Lucy (RL)
ASE = 24.3831

Neelamani (NM)
ASE = 21.9385

Figure A.2: Estimates for mock data with noise level σ = 0
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Figure A.3: Above: pristine image, below: blurred and noisy
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Wiener Filter (WF)
ASE = 47.903

Blind Expectation Maximization (BEM)
ASE = 207.6493

Richardson-Lucy (RL)
ASE = 68.1796

Neelamani (NM)
ASE = 56.551

Figure A.4: Estimates for mock data with noise level σ = 5
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Figure A.5: Recorded image (strongly degraded)
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Wiener Filter (WF)

Blind Expectation Maximization (BEM)

Richardson-Lucy (RL)

Neelamani (NM)

Figure A.6: Estimates for real-world data (1)
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Figure A.7: Recorded image (small amount of blur)
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Wiener Filter (WF)

Blind Expectation Maximization (BEM)

Richardson-Lucy (RL)

Neelamani (NM)

Figure A.8: Estimates for real-world data (2)
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