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Introduction

Tracking plays an important role in Augmented
Reality (AR) applications. One possibility to
find and track an object is to attach a fixed ar-
rangement of balls to it and use them to deter-
mine its three-dimensional position. Medical in-
struments like scissors could also be tracked that
way but the ball arrangement can be disturbing
while working with the instrument. For medical
scissors another approach is possible to identify
their position and orientation using only the legs
of the instrument.

Proceeding

The aim of this diploma thesis is to track medi-
cal scissors using reflective lines. The legs of the
instrument are covered by retroreflective mate-
rial and the pair of scissors is exposed to infrared
flashlights. Thus images can be generated where
the legs are easily recognizable.
The project can be divided into three major
parts of work:

• finding the lines in the infrared images using
Hough Transformation

• tracking the lines in a series of images

• determining the three-dimensional position
of the instrument using images of two stereo
cameras

The order of the latter two parts is not fixed.
Still, the question needs to be solved which order
is better for our case.

Hough Transformation

Hough transformation is a very efficient proce-
dure for detecting lines and curves in pictures.
Instead of testing the lines formed by all the
pairs of figure points the points are transformed
into a parameter space. There they vote for all
the lines they lie on. Finally the present lines in

the picture should be the ones which gained a
lot of votes.

Theory

Mathematically the transformation can be rep-
resented as follows:

ρ = x · cos(θ) + y · sin(θ)

Each figure point (x, y) is transformed into a si-
nusoidal curve in the parameter plane. Collinear
points are represented by curves with a common
point of intersection (see Figure 1). So present

Figure 1: Hough Transformation

lines in the picture should be found by count-
ing the number of intersecting curves (the votes)
for each point in the parameter plane, for each
pair (ρ, θ). This is done in a so called accumula-
tor array. For the implementation of the hough
transformation the parameter plane needs to be
discretised with a convenient grid. The accumu-
lator array then represents this grid and collects
the votes for each cell. Figure 2 shows an image
representation of such an array.

Figure 2: Accumulator Array
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Practical Problems and Possibilities

Literature on the Hough Transformation men-
tions several general practical problems and
for this project an additional specific problem
arises:

Discretisation:
Finding an appropriate grid size is very difficult.
Too coarse grids can lead to falsely large votes
because quite different lines correspond to the
same grid cell. And if the grid is too fine, present
lines might not be found because votes end up
in different cells.

Difficulties with noise:
An advantage of the Hough Transformation is
that it connects widely separated tokens if they
are nearly collinear. But this can also be a weak-
ness. Phantom lines might be detected in re-
gions with uniformly distributed figure points.

Different line intensities:
Tests with infrared images of the pair of scissors
showed the problem of different line intensities.
If the number of figure points belonging to the
legs of the instrument differ considerably, the
Hough Transformation results in either only
lines along the ”clearer” leg or in too many lines
along both legs (see Figure 3).

grey value threshold: 150 grey value threshold: 200

Figure 3: Different line intensities

But what can be done to face these problems?
The actual implementation contains various at-
tempts which shall be discussed next:

Variable cell size:
Variable parameter discretisation (ρ and θ) al-
lows arbitrary adjustments of the cell size.

Variable grey value threshold:
Additionally the threshold for grey values can
be modified to influence the number of figure
points which are included in the Hough Trans-
formation. The effect on the results can be seen
in Figure 3.

Variable back transformation threshold:
This threshold cannot ameliorate the results of
the transformation but it is an indicator for the
quality of the other chosen variables. Which ac-
cumulator cells have votes high enough? These

pairs (ρ, θ) shall be transformed back to the orig-
inal plane (represented as colored lines in Figure
3).

Grouping of parameter pairs:
Usually a larger number of parameter pairs
needs to be considered for back transformation
to find all the lines in the original image. But
this means that a lot of computed lines will stand
for the same image line. To reduce the number
of computed lines they can be grouped together
by similar values of ρ.

Splitted Hough Transformation
All the efforts described above are not sufficient
to allow the accurat discovery of both legs of the
pair of scissors. Therefore the actual implemen-
tation searches for each leg separately. First the
whole image is considered in the Hough Trans-
formation and the maximum value in the ac-
cumulator array is chosen as representation of
the first leg. After back transformation the dis-
covered line is eliminated and another Hough
Transformation is done with the resulting image.
Again the maximum value is chosen to represent
the second (probably less clear) leg of the pair
of scissors. This approach allows a result with
appropriate accuracy (see Figure 4).

Image after elimination Discovered lines

Figure 4: Splitted Hough Transformation

Linetracking

Linetracking can be done either directly after the
Hough Transformation or it is postponed until
the 3D position of the object is determined. The
alternative that will be chosen here will depend
on the data provided by the Hough Transforma-
tion and the possibilities of calculation in either
case.
In the former a method of tracking could be the
following (see Blake and Isard [1998]):
A template vector of grey values represents the
profile of the line which shall be tracked. It can
be calculated from the first image in the series.
This template is now moved along the line nor-
mal in the next image until an optimum of con-
formance with the image data is found. Figure
5 shows the principal configuration.

2



Figure 5: Configuration for line tracking

For a template T and an normal image I the
point of maximum conformance can be deter-
mined by minimizing the mathematical correla-
tion (correlation matching):

∫ δ

x=0

I(x− x′)T (x)dx with 0 ≤ x ≤ δ

3D-Positioning

Given the data from two cameras the pair of
scissors - discovered in the images via Hough
Transformation - shall now be placed into the
3D-space. To compute its position several steps
are necessary. Here only an idea of the theory
behind is given, for further details see Zisserman
and Hartley [2003].

Camera Model and camera matrix

The first step is to express the relationship be-
tween world points and image points:
The projection of a point in homogenous world
coordinates X = (X,Y, Z, 1)T onto the image
plane (image point x = (x, y, z)T ) can be repre-
sented as a matrix-vector-multiplication

x = PX

where P is the camera matrix. P can be com-
puted from point correspondences Xi ↔ xi of
world coordinate points and camera coordinate
points.

Figure 6: Camera Model

Epipolar Geometry and fundamen-
tal matrix

Epipolar geometry considers two image repre-
sentations of the world. The relationship be-
tween the two images of a world point shall be
expressed next:
The world point X is represented as x and as x′

on two image planes. C and C′ are the projec-
tion centres, the cameras. The line connecting
them is called base line and the intersections of
the base line with the image planes are called
epipoles (e and e′). l′, the epipolar line, is the
intersection of the epipolar plane π and the im-
age plane of C′. Figure 7 (a) shows the princi-
ple structure. For the case of tracking scissors
two lines need to be positioned in 3D-space. In
epipolar geometry such a line is the intersection
of two planes as can be seen in Figure 7 (b).

(a) principle structure

(b) intersection of the epipolar planes

Figure 7: Epipolar geometry

The algebraic representation of the epipolar
geometry is the fundamental matrix F . The ba-
sic idea is that there exists a mapping between
an image point x and the epipolar line on the
second image plane l′. Geometrically l′ connects
the epipolar point e′ and the image point x′ and
there exists a mapping from x to x’. It can be
shown that

l′ = Fx

For the fundamental matrix F the following
condition holds for any pair of correspondences
xi ↔ x′i:

x′T Fx = 0.

3D-Reconstruction

With the basis described in the previous sections
the projective 3D-reconstruction can be done as
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follows:
Given enough point correspondences xi ↔ x′i
the fundamental matrix F can be calculated
solving the linear equation system

x′Ti Fxi = 0.

As a second step the camera matrices P and P ′

can be computed. Finally for each correspon-
dence xi ↔ x′i the point Xi in space is retrieved
via Triangulation using the equations

xi = PXi , x′i = P ′Xi.
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