
Project configuration guide for OsiriX plugins using the ITK framework

Author: Brian Jensen

Systems Development Project (SEP)
Chair for Computer Aided Medical Procedures & Augmented Reality,

Department of Informatics, TU München

Department of Nuclear Medicine
University Hospital Rechts der Isar, TU München

Supervisor: Ralph Bundschuh
Advisor: Prof. Dr. Nassir Navab

This document covers the steps necessary to enable a plugin for the popular OsiriX di-
com viewer to safely make use of the ITK framework. This process involves some source
level modification of the ITK source code, although this happens on a very superficial level
and should have absolutely no functional difference to an unmodified version of the frame-
work. Only the aspects of Osirix plugin development or objective-c++ programming that
are relevant for ITK integration are discussed here, for more general information on these
subjects see the OsiriX plugin guide. As a reference configuration either the source code for
the plugins PetSpectFusion (http://campar.in.tum.de/Students/IdpPetSpectRegistration) or
NMSegmentation (http://campar.in.tum.de/Students/SepOsiriXSegmentation) can be used.

1 Prerequisites

The foremost requirement is that you have a current version of Apple’s developer tools in-
stalled on your system, this should be version 3.1.0 or newer. You should also have already
created a valid OsiriX plugin Xcode project. If you have not done this, you can create a new
plugin project using the helper script located under plugins/ help/Osirix Plugin Generator.zip
of the main OsiriX svn directory. This script automatically creates a new Xcode project with
the necessary settings for creating an OsiriX plugin. Although it is technically not required,
it is highly recommended that you check out a copy of the OsiriX source code from the svn
repository. This is accomplished by entering the following command in the terminal

svn co https://osirix.svn.sourceforge.net/svnroot/osirix osirix

1

http://campar.in.tum.de/Students/IdpPetSpectRegistration
http://campar.in.tum.de/Students/SepOsiriXSegmentation

This will download a copy of the newest source code revision into the current directory.
The OsiriX Xcode project is located under the subdirectory osirix, and many of the standard
plugins included with OsiriX are located under plugins. When compiling the OsiriX source
code for the first time, don’t forget to set the active target to Unzip Binaries and build
the project. This step unzips the ITK and VTK libraries necessary to build OsiriX and only
needs to be run once, afterwards you should set the active target to OsiriX.

You will also need to download a copy of the ITK source code, which can be obtained from
http://www.itk.org. In order to configure ITK you will need to install CMake located at
http://www.cmake.org.

2 Xcode configuration

There are two options available for configuring your Xcode project. You can either let your
project use the modified Osirix headers that included with project when it is created, or you
can use the Osirix headers straight from the source code. The latter naturally offers more
flexibility, but it requires that you have the source code on your hard drive. You also have
the choice of using the ITK libraries included with OsiriX, or as is highly recommended using
your own copy of ITK, which will be explained in section 3.

2.1 Configuring paths

Figure 1: The path listing of the PetSpectFusion plugin project folder with the four required
symbolic links

2

http://www.itk.org
http://www.cmake.org

Regardless of whether the original OsiriX headers are used, the search paths for the ITK
headers have to be setup. This can be accomplished either by using project wide settings or
by specifying the search path for each individual file that uses ITK classes, although I will
only cover the project wide settings. First you will need to set a few symbolic links.

Figure 1 shows the four symbolic links used by the example project PetSpectFusion. Each
symbolic link needs to be created in your plugin’s project root, which should be the directory
where the Xcode project file is located. The only real required symbolic link is ITK180,
which either points to osirix/ITK180 in the OsiriX source code directory, or to your own
copy of ITK. If you want to have access to all the OsiriX header files, then you will need
a symlink osirix that points to the Xcode project directory inside the OsiriX source code.
If your project uses VTK, then you will need the symbolic links Binaries, which points the
directory osirix/Binaries, and VTKHeaders which points to osirix/VTKHeaders.

Next you need to configure the user header and library search paths in Xcode. For this
select your plugin’s name under Targets, right click and select Get Info. This opens the
project build settings dialog as can be seen in figure 5.

Make sure that All Configurations is selected in combo drop down box, so that the
settings are modified for all configurations. Under the section Search Paths double click
User Header Search Paths. This will bring up a configuration sheet like in figure 2.
Copy the paths to the style sheet so that they match those present in figure 2. The path
ITK180/Code/Review only needs to be entered if ITK was configured to use the review
directory, see section 3. If you are not using the headers from the OsiriX source code, then
the path osirix is unnecessary.

Next you need to modify the setting Library Search Paths. You should modify the
settings to match those present in figure 3.

2.2 Configuring build settings

Once the symbolic links and the search paths have been configured the build settings need to
be modified. The first thing that you might want to modify is the Architectures setting.
This setting has to match or expand the settings present in the OsiriX executable you wish to
target. The publicly released OsiriX version supports the i386 and ppc7400 architectures.
The 64 bit extension also supports the x86 64 architecture, so I recommend that you target
all three architectures.

Under the section Compiler Version you should select GCC 4.2. This version of gcc
generates more optimized code compared to the default of gcc 4.0. Under the section Linking
you can make two optional changes that help to avoid runtime linking problems. In Other
Linker Flags remove both the entries -undefined and dynamic lookup. Then modify the
Bundle Loader property to point to the OsiriX executable you are targeting like in figure 4.
This option enables the static linker to verify that any symbols used by the plugin are actually
present in the host executable, but this also means the target executable has to support all
the architectures your plugin targets, otherwise the linker will generate errors.

The final mandatory step is to tell the static linker which ITK libraries to link against and
where they are located. This is accomplished in the main viewer window by adding a new
group under Frameworks and Libraries. You can name the new group as you please, but I
recommend you choose a new name that is descriptive of its purpose. Then right click on the
new group and select Add then Existing Files.... In the dialog navigate to the bin folder of
the ITK distribution you are using, and select all files ending in .a. Your new group should

3

Figure 2: The user header search paths. It is extremely important that the ITK paths are
located before the OsiriX path because certain files in OsiriX and ITK have identical
names aside from their capitalization and HFS+ is per default not case sensitive.

look something like figure 6.
An optional step for easing the transition between development and deployment builds is

to include a script that automatically changes a link in the OsiriX plugins directory to point
to the current build. This is accomplished by simply adding a new build phase to the plugin
target by right clicking the target and selecting Add then New Build Phase then New Run
Script Build Phase. Simply copy the example script in figure 7 and a symbolic link under
USER HOME/Library/Application Support/Osirix/Plugins/ to current plugin bundle will be
automatically generated every time you build the project. The scrip should be added at the
end of build flow, if not make sure it is the last task run.

Note: I highly recommend that you set all of the symbolic links mentioned in this section
using the command line ln command and not using aliases. It has been my experience that
using aliases leads to random errors were certain files were not always found by the build and
plugin loading process, leading to very difficult errors to debug.

4

Figure 3: The user library search paths

3 ITK configuration

This section deals with creating your own ITK libraries to link with your plugin. Ideally
you should be able to freely chose between using the ITK libraries included with the OsiriX
source code or using your own version. In practice this is only true under certain conditions
due to the way cocoa loads plugins and the dynamic linker resolves symbols. Without any
modifications you can only safely use your own ITK copy if it is the same version and compiled
with the same options as the one in your targeted version of OsiriX.

The main reason for this condition is due to the way the static and dynamic linkers handle
symbol management for Mach-O files, the executable format used on OS X. When you stat-
ically link against a library, even though any referenced symbols (functions, classes, global
variables) are copied into your executable, the references to these symbols don’t point directly
to the symbols themselves, but instead into the symbol table of the executable. The symbol
table holds the offset in the executable for each statically linked symbol, and is empty for
symbols that are loaded at runtime by dynamic linker (unless prebinding is activated). When
the executable is run and a piece of code accesses a statically linked symbol such a function,
instead of calling the function directly, it first calls the dynamic linker. The dynamic linker
determines the proper address of the function from the symbol table, and replaces the refer-
ence to the function with the correct runtime time address of the function in the calling code.
Control returns to the calling code just before the function call, so that the function call this
time won’t be to the dynamic linker, but to the actual function.

When OsiriX loads your plugin, Cocoa’s bundle loading facilities copy your plugin’s exe-
cutable code into OsiriX’s executable section in memory. One effect of this behavior is that
the symbol table in your plugin’s executable is merged with the OsiriX executable’s symbol
table. The catch is that only the symbols that are not already defined in OsiriX’s symbol
table are copied, meaing that if your plugin and OsiriX have some of the same symbol names
defined, only the OsiriX version of those symbols will be available to your code, even if they
are implemented completely differently.

That means the only safe way to use ITK in your plugin is to either use the exact same

5

Figure 4: The bundle loader path used to verify presence of symbols in the target application

version as is present in your targeted version of OsiriX, or use your own copy of ITK with
symbol names different from those present in OsiriX. The former option is highly problematic
from a maintenance perspective, because you would have to release a version of your plugin
for each version OsiriX in order to be sure there are no unexpected symbol collisions.

In comparison creating a version of ITK with unique symbols has far less risks of unexpected
behavior and is much more maintainable. The easiest way to accomplish this is to use a
script included with the PetSpectFusion and NM Segmentation plugins’ source code that
automatically refactors the ITK namespace used in the libraries to a user specified name
before they are compiled. Technically an alternative solution would to be use the low level
bundle loading facilities to manually resolve the ITK symbols in your plugin, but such a
method would likely involve manually resolving tens to hundreds of symbols and would quickly
become infeasible.

3.1 CMake build settings

In order to refactor the ITK namespace you first have to download and configure the ITK
source code. The configuration is taken care of using CMake. When configuring ITK make
sure you set the build directory to the source directory, so that the ITK build will have the
same structure as the ITK build present in the OsiriX source code. This can be convenient
if you want to easily switch between the OsiriX ITK version and your ITK version, all you
would need to do is change location pointed to by the ITK180 symbolic link in your probject
directory. It is important that you turn off BUILD TESTING in the CMake configuration
options, because the automatic namespace refactoring script has to deactivate the ITK test
driver. You may also wish to disable BUILD EXAMPLES in order to speed up the build
time and reduce the hard drive space required. For the CMAKE BUILD TYPE setting,
both Release and MinSizeRel are appropriate options. Make sure all of the architectures
targeted by your plugin are listed in under CMAKE OSX ARCHITECTURES. The rest
of the default settings should not need to be changed. If you are interested in using the newest

6

Figure 5: The project build settings dialog

ITK code for the newer class and better multithreading support, you will need to activate the
option ITK USE REVIEW located under advanced settings. Additionally if you want to
take advantage of the multithreaded registration methods available since ITK Version 3.6 you
will also need to activate the option ITK USE OPTIMIZED REGISTRATION METHODS
located under the advanced section. For an example of the basic CMake settings see figure 8.

3.2 Namespace refactoring

After you have configured your copy of ITK and generated the build files, you need to run the
namespace refactoring script named refactor namespace.sh, which can be obtained from the
source of the PetSpectFusion (http://campar.in.tum.de/Students/IdpPetSpectRegistration)
or NM Segmentation (http://campar.in.tum.de/Students/SepOsiriXSegmentation) plugins.
The script makes changes to the source code of the ITK libraries, so that the ITK namespace
is changed to a namespace specific for your plugin. The script is used as follows:

7

http://campar.in.tum.de/Students/IdpPetSpectRegistration
http://campar.in.tum.de/Students/SepOsiriXSegmentation

Figure 6: The list of ITK libraries the PetSpectFusion plugin is linked against. Because Xcode
always stores these links as absolute pathnames, it is important that the libraries
are read added each time you change your ITK location.

refactor_namespace.sh path/to/itk yourNamespace

Once the script completes you can simply build itk by starting make in the itk build
directory. After building completes you need to change the ITK180 symbolic link in your
project directory to point to your newly created ITK build. Then final step involves modifying
all the references to the ITK namespace in your source code and replacing them with the new
namespace. The easiest solution is to run a global find / replace on all instances of itk, but
this makes switching between ITK versions a pain. A better approach is to set a #define
directive in a header file included in all your source code files that use ITK, so that the
namespace used can be easily changed at compile time. As an example:

8

in file ”Project definitions.h”:

#define ITKNS myITKNamespace

in any implementation file that uses ITK:

#include "Project_definitions.h"

...

ITKNS::ImageType::Pointer image =

4 Troubleshooting

Integrating ITK with in an OsiriX plugin can be very frustrating task, especially for some
one new to Xcode and objective-c. I attempt to cover some of the most common errors and
their usual cause as well as the remedy to the bothersome situation.

4.1 Various ITK or OsiriX header files not found

This is the simplest error to resolve, as this is almost caused by incorrect header search
path settings. Simply make sure that the header search paths are complete for your target
(Development or Deployment). If you have missing files with Opt in the name, make sure to
add the review directory ITK180/Code/Review to your search paths.

4.2 ITK classes cause thousands of errors (mostly due to C++ structures)

In the famous words of Douglas Adams: don’t panic. Although it is sometimes a little
frightening to get bombarded with so many error messages from the compiler, gcc really
means well. This is almost always caused by using ITK or C++ code in a file that is marked
as objective-c only. An example can be seem in figure 9. This is resolved by giving any file
that uses C++ and objective-c code the ending .mm. If your file already had the ending .mm
then make sure it is marked as objective-c++ code by right clicking the file, selecting Get
Info, and under the general tab select the file type as sourcecode.cpp.objcpp. See figure
10 for a reference.

4.3 Strange errors in OsiriX header files

Sometimes OsiriX header files end up included by some of the ITK header files where they
don’t belong without an apparent reason. Well not quite no apparent reason. Some files have
the same name in OsiriX as in ITK, with the exception that they are differently capitalized
(such as ITKVersorTransform.h in OsiriX and itkVersorTransform.h in ITK). These files are
treated as equals by OS X because the standard filesystem HFS+ is not case sensitive, and so
the compiler takes the first one it finds. So if OsiriX header files are magically being included
by ITK header files, make sure that osirix is the last entry in your header search paths list.
For an example of what such error messages can look like see figure 11.

9

Figure 7: A custom script that automatically creates a symbolic link to the plugin bundle for
current configuration.

10

Figure 8: Typical ITK settings that are appropriate for OsiriX plugin development. If you
have enabled optimized registration methods and the review code you should also
see two warning in the output.

11

Figure 9: This is a sample of the output caused when the objective-c compiler runs over a
file that contains C++ code. Note that base errors are usually C++ only concepts
(iostream).

12

Figure 10: The file info dialog. If your classes uses C++ code make sure its file type is marked
as can seen in this figure.

13

Figure 11: This error was caused by incorrect path settings. The compiler included an OsiriX
header instead of an ITK because both them have the same name.

14

	Prerequisites
	Xcode configuration
	Configuring paths
	Configuring build settings

	ITK configuration
	CMake build settings
	Namespace refactoring

	Troubleshooting
	Various ITK or OsiriX header files not found
	ITK classes cause thousands of errors (mostly due to C++ structures)
	Strange errors in OsiriX header files

