Systementwicklungsprojekt:

BreakOut - Augmented Reality for computer games

Steven Pessall
pessall@in.tum.de

March 29, 2004

1 Introduction

This document is a result of my ”Systementwick-
lungsprojekt” (SEP) conducted at the chair for ap-
plied software engineering at the Technical Univer-
sity of Munich. This chapter deals with the motiva-
tion for this project. Additionally there is a short
overview over the implemented game and over re-
lated research projects.

1.1 Motivation

Demonstrating the possibilities of augmented real-
ity systems to an audience lacking in-depth knowl-
edge can be quite difficult. The aim of this project
was to implement a simple game which can be used
to demonstrate the possibilities of augmented re-
ality in general and particularly of the DWARF
framework.

1.2 Gameplay

The game chosen for this purpose is based on the
popular game BreakOut, which was originally de-
veloped by Atari in 1976 as an arcade video game.
Over the years there have been numerous remakes
and similar games.

In this game the player controls a racket at the
bottom of the playing area. The player has to use
the racket to prevent the ball moving in the area
from reaching the bottom side. At the top of the
area there is a number of blocks, which have to
be destroyed to win the game. The blocks are de-
stroyed if they are hit repeatedly by the ball.

In the further course of this work the term
”BreakOut” refers to the game developed during
this SEP project.

Figure 1: BreakOut

1.3 Related Work

There have already been several projects with the
aim of implementing games in AR for the purpose
of demonstration. Like BreakOut these are very
often based on well known existing games, but differ
greatly in the degree in which they make use of
augmented reality aspects. The list in figure 2 is a
selection of projects and by no means complete:

2 Requirements

In the following the requirements for the project
are summarized. These requirements concern both
the usability from the viewpoint of the user as well
as the maintenance of BreakOut.

2.1 Real world interaction

As stated in 1.1, one of the main aims of this project
was to be able to demonstrate the possibilities of
augmented reality. For this reason the user should

AR Quake
AR2 Hockey
Matchtwo
0XO

MR Pong

http://wearables.unisa.edu.au/projects/ ARQuake/www/
http://www.mr-system.com/project /main2e.html
http://www.cybernarium.de/content_en/welten/spiele/matchtwo
http://www.cybernarium.de/content_en /welten /spiele/oxo
http://www.mlab.uiah.fi/ kkallio/mr-pong/

Figure 2: Related projects

be able to manipulate the game by interacting with
the environment instead of using conventional in-
put methods. Since the user controls the racket in
BreakOut, the interaction with the racket can be
implemented by letting the user manipulate it by
moving a tracked object in the field of play.

2.2 Visualization

Unlike most AR projects, BreakOut is not intended
for use with a head mounted display (HMD). In-
stead the field of play is to be projected on a flat
surface (i.e. atable) by a beamer. The advantage is
that although BreakOut can only be played by one
user it’s visibility is not restricted to the user. This
would have been the case using a HMD. Addition-
ally by restricting BreakOut to a 2D environment
the development effort is reduced. This restriction
is not detrimental to the game play.

2.3 Configurability

For easier maintenance in the case of future use,
BreakOut is supposed to be configurable to a large
extent without the need of changes to the source
code of the project. To realize this configurability
appearance and content of BreakOut need to be in-
terchangeable solely by modifying or replacing text
based configuration files.

3 System design

This section describes the interaction between
BreakOut and other DWARF services regarding the
needs and abilities.

The BreakOut service only has one need
of the type PoseData. This need is intended
to receive positional data from the racket,
supplemented by a tracking device (e.g. the
ARTTracker). The ObjectCalibration service

is interposed between the BreakOut and the
tracking services for calibration purposes. Af-
ter processing the data of the racket BreakOut
transmits the processed racket position as well
as the ball position over separate abilities of
type PoseData. During initialization BreakOut
also transmits data over three additional abilities:

SceneData The actual visualization information

UserAction Necessary for selection of recipients
for PoseData events

PoseData Used for transmitting the position

of the blocks and the viewpoint
All these abilities are sending the necessary infor-
mation for the visualization. The Viewer service
can be used for the visualization purpose.

4 Object design

For sake of clarity the name of the relevant func-
tions in the objects are omitted in the description.
The focus of the description is the functionality of
the objects and not the concrete structure.

4.1 Game logic

Most of the programming went into the develop-
ment of the classes of this category. All game re-
lated calculations are performed here.

BreakOut This is the core component of the ser-
vice. It is responsible for the initialization and
starting of the game as well as keeping track of
the progress of the game, i.e. switching to the next
level if all blocks are destroyed. For this purpose it
stores game related data, consisting of the position
and properties of the blocks and general level infor-
mation. The initial values for the data are parsed
using an instance of LevelXMLHandler from files
on the hard disk.

FPoseData
Y

ObjectCalibration

PoseData [z

')

ARTTracker

PoselData

Ry
PoselData
T

BreakOut

T

Viewer

PoselData
T

SceneData
P

Figure 3: System Design

The instances of the other game logic related ob-
jects, the Racket and the Ball class, are also cre-
ated in this object. The Racket class is used to
process the positional data of the real world object
representing the racket. This positional data is sup-
plied by the RealObjectPose class, which handles
incoming PoseData events from the tracking com-
ponent. The Ball class calculates the movement of
the ball.

Lastly this class communicates with the other
DWARF services. for this purpose it creates several
instances of objects derived from BasicSender for
transmission of PoseData events (for the position of
the racket, the ball,the blocks and the viewpoint),
SceneData events and UserAction events and one
instance of RealObjectPose, which was mentioned
above. The RealObjectPose and the sender in-
stances correspond to the need and the abilities of
this service respectively.

Ball This object is created by BreakOut. It’s pur-
pose is to calculate the movement of the ball. Be-
fore the Ball class transmits the current position
of the ball it retrieves the position of blocks in close

proximity from BreakOut and the current position
of the racket from the Racket class to check wether
the calculated movement of the ball results in a col-
lision with a block or the racket. If this is the case
the collision has to be resolved before the position
of the ball can be transmitted. After finishing the
calculations it uses the instance of PoseDataSender
created by BreakOut to send the updated position
of the block to the Visualization component (e.g.
Viewer). If the ball collided with a block in its last
movement the Ball class notifies BreakOut that the
concerned block has been hit. In figure 5 you can
see a sequence diagram of the flow of action in the
ball class.

Racket This object is created by BreakOut. It
retrieves the positional data of the real world object
representing the racket from the RealObjectPose
class. This positional data is then processed
and sent to the Visualization component via the
BreakOut class.

==5vcProtPushSupplier==
BasicSender

RealObjectFoze

— >

1

SvcProPushConsurmer

PoseZender

Racket

1

sax. ContentHandler

i

LevelXMLHandler

threading. Thread

UserdctionSender

1

1

BreakOut

LevelDescription

PoseSender

==EveProtPushSuppliers=:=
BasicSender

ScenelDataSender

1

n

Blocks

Ball

1

threading. Thread

PoseSender

—>

==EveProtPushSupplier=:=
BasicSender

Figure 4: Object Design

Ball Racket

BreakOut

PoseSender

fetPosel __E:|

]

getMearestBlock) !
|

checkCollisions() | i
|

|

|

|

calculatelntersection() | i
|

|

sendEventDatal) |
T

|

blackHit() |

T

|

|

|

|

|

|

|

|

I

T
|
|

]

Figure 5: Sequence diagram of the ball class

4.2 Event handling classes

As BreakOut is designed as a DWARF service com-
munication with other services is based on CORBA
events. The classes of this category are designed
to either handle incoming CORBA events or to send
these events to other services.

BasicSender This is the base class for all event
sending classes. It implements the functions re-
quired to maintain the connection to the consumer,
i.e. the visualization component, and for sending
the event data. Classes derived from this base class
only need to implement functions concerning the
creation of the event data.

PoseSender This subclass of BasicSender is
used for sending PoseData events. BreakOut uses
three instances of this class: One for the ball po-
sition, one for the racket position and the last one
during initialization for the position of the blocks
and the viewpoint.

SceneSender This subclass of BasicSender is
used for sending SceneData events. During ini-
tialization BreakOut sends events of this type to
the visualization component for the ball,racket and
blocks so that these objects are displayed. During
the game it is used to send events removing blocks
from the game.

UserActionSender This subclass of
BasicSender is used for sending UserAction
events. These events are needed to select objects
so that PoseData events can be sent to change the
position of these objects.

RealObjectPose This class receives the posi-
tional data for the real world racket from the track-
ing component. This data is stored in the class and
is later retrieved by the Racket class.

4.3 Data import

To fulfill the requirement of configurability
BreakOut was designed to parse the relevant infor-
mation for the game levels from an arbitrary file(see
7.2 and 7.3 for details). For this purpose BreakOut
makes use of the xml.sax package (Simple API for
Xml).

LevelXMLHandler This class is a subclass of
xml.sax.handler.ContentHandler. During one
parsing run it stores all information for the parsed
level in an instance of LevelDescription. This in-
formation can then be accessed by BreakOut. Dur-
ing the first parsing run it creates a list of all avail-
able levels in the parsed file.

LevelDescription An instance of
LevelDescription stores all relevant infor-
mation for one level. Amongst other things it
contains an array of Block instances containing
information about all blocks of the level.

Block This class stores the information for one
block in the game.

5 Game physics

Most important aspect is the analysis of collisions.
BreakOut only checks if the ball collided with the
racket or the blocks. This is sufficient since the only
other moving object, the racket, is restricted to the
bottom of the playing area, which prevents it from
colliding with the blocks.

5.1 Collision detection

The first step is to detect wether there actually oc-
curred any collisions. To accomplish this BreakOut
compares the position of the ball to the position of
all other objects, i.e. to the position of the racket
and the blocks.

Q Qld position
Y

1
A
!

3
Y

Ky
E)New position

Object

Figure 6: Collision on the top side of object

If the distance between two objects is too small
BreakOut assumes there was a collision. The check
is performed by using the following equation, where

d stands for the distance between the ball and the

object. Additionally, r stands for the radius of the

ball while s stands for the size of the object.
d<r+s

This check is executed twice, once for the hor-
izontal and once for the vertical distance/size. If
both return true as result BreakOut assumes that
the ball and the object collide. If BreakQOut de-
tected a collision it tries to determine on which side
of the object the ball collided with the object. To
do this it takes into account the position of the
ball before the last move. To determine the side
BreakOut performs four tests, two for the horizon-
tal and two for the vertical positions/size. In those
equations p,;q stands for the position of the ball
before the last move, p,bj for the position of the
object, r for the radius of the ball and s for the size
of the object.

If this test returns true, BreakOut assumes a col-
lision on the right or respectively top side of the
object:

Dold — T = Pobj + S

If this test returns true, BreakOut assumes a col-
lision on the left or respectively bottom side of the
object:

Dold + 7 2 Pobj — 8

If the old position for example was above the
position of the racket BreakOut would assume a
collision on the top side of the racket (see figure 6).

6 Collision resolution

If there is a collision it has to be resolved, so that
the ball and the relevant object don’t occupy the
same space any longer. This resolution is carried
out in two steps. First step is to move the ball to
the position where it touches the object for the first
time. The new position for the ball is determined
by calculating the intersection of the balls path and
the corresponding side of the object. To take into
account the fact that the stored position of the ball
is actually its center the radius of the ball is added
to the position of the considered side (see figure
7). To calculate the intersection BreakOut uses the
position of four points, while every two points are
used to calculate one vector. The first vector, rep-
resenting the movement of the ball, is calculated
from the current position of the ball and the posi-
tion of the ball before the last move. The second

vector is calculated from the edge points of the side
of the object, which is considered for the collision.

First of all BreakOut calculates the slope of the
two vectors:

— y2—yl
sl = r2—xl
_ y4—y3
52 = xrd—x3

Then it calculates the zero-crossing of the y axis:

zl=yl —x1-sl

22=y3 —x3 52

After these steps it calculates the actual position
of the intersection:
z1—22
s2—s1

yi=s1-21+ 21

Second step is to update the flying direction of
the ball, to prevent it from colliding with the same
object again and to give a realistic impression of a
bounce. To determine the new direction BreakOut
uses one of two different formulas, depending on the
orientation of the side from which the ball bounces.
For horizontal surfaces BreakOut uses the following
formula, where d stands for the direction of the ball:

d = (180 — d)%360

For vertical surfaces it uses a different one:

d = —d%360

BreakOut uses these formulas for all calculations
with only one exception: If the relevant side is the
top side of the object and the object is the racket,
the calculation is treated differently.

Tl =

Old position

@

"
b
I

-

4 :
A Intersection
L

ks

i}

V)

Mewy position

Figure 7: Calculated intersection

6.1 Racket

As the racket has a square shape for the sake of a
less complex collision detection, the problem arose
that the player could not influence the direction of
the ball. Since the ball would only ever collide with

Old position

Mew direction

Intersection

Figure 8: Updated direction

straight surfaces there would only be a few possible
directions for it. To counter this problem the top
side of the racket is treated as curved. Instead of
a constant 90 degrees BreakOut calculates an an-
gle ranging from 60 degrees at the left edge to 120
degrees at the right edge. To calculate the actual
angle BreakOut uses the following formula:

(% -60) + 90

In this formula p;, stands for the position of the
ball, p, for the position of the racket and s, for
the size of the racket. If the result is greater than
70 and lower than 290 degrees it is changed to the
nearer one of those two values. This is so to prevent
illegal values as well as values which would result
in boring gameplay. Illegal values are values where
the updated direction of the ball would cause it to
immediately collide another time with the racket.
These values can occur due to the curved nature of
the racket.

7 Installation & configuration

This chapter deals with everything that has to be
done to get BreakOut up and running. It also dis-
cusses the possibilities of configuration of the game.

7.1 Installation

To install BreakOut you first have to install DWARF.
You can either start the ”configure” script dur-
ing installation of DWARF with the parameter ”—
enableBreakOut” or you can manually install the
required files. To do this you have to start
“make” in the directories ”src/services/BreakOut”
and ”applications/BreakOut” after installation of

DWARF is finished. The first call of make installs the
required files for the service BreakOut, while the
second call installs the following files:

Level description A file containing the descrip-
tion of a default set of game levels(see 7.2 for
details)

Graphics Several files in the Vrml format contain-
ing the graphic elements of the game(see 7.2
for details)

Service descriptions The xml descriptor files for
other required services (see 7.3 for details)

These files are the

”share/BreakOut/”.

copied to directory

7.2 Game configuration

BreakOut was designed for maximum configurabil-
ity without the need of changes in the source files.
Therefore BreakOut parses a number of easily mod-
ifiable or replaceable configuration files on startup.

Appearance BreakOut uses files in the Open
Inventor file format for visualization purposes.
During initialization of the game several files in this
format are being loaded. These files can contain
wildcards instead of float integers for the values of
certain vrml nodes. These wildcards will be re-
placed either with values from the level description
(see 7.2 for details) or with default values.

In the following example the strings ”green”,
red” and ”blue” would be replaced with the
respective values from the level description. These
wildcards for the colour of an object can be used
in all vrml files.

Material {
diffuseColor green red blue
}

BreakOut loads vrml files for the following
objects. The paths of these files can be configured
in the level description file (see 7.2).

Ball Besides the wildcards for the colour the
vrml file for the ball can contain the wildcard
?radius” for the radius of the ball. The
default path for this file is
”../share/BreakOut/ball.wrl”.

Racket This file can contain the wildcards
7xSize”, " ySize” and ”zSize” for the
corresponding size values in the geometry
node, as well as the colour wildcards. Default

path is ”../share/BreakOut/racket.wrl”.

Block This vrml file is used for all blocks in one
level. It can contain the same wildcards as
the racket. Default path is
”../share/BreakOut/block.wrl”.

Playfield This file is used as a background for
the playing area. Like in the other files it
supports wildcards for the colour. But it does
not support wildcards for the position
because BreakOut always assumes that the
bottom left corner of the playing area is at
the point of origin. It replaces the wildcard
”boundary” with a list of coordinates of the
four edges of the playing field. This wildcard
is intended to be placed in the ”Coordinate”
node of an IndexedFaceSet. After the
”"boundary” wildcard there can be an
additional wildcard ”brim”, which is replaced
with the coordinates of the points for a
simple brim of the playing area. These
coordinates are generated from the values of
the element ”playfield” in the level
description file (see 7.2 for details)

Layout During initialization BreakOut parses
the levelFile (see 7.3 for details), which contains
the description of all levels in the game. If this file
is missing (or a wrong path was passed) then
BreakOut is unable to start. The description of a
level contains amongst other things information
about the colour and size of objects. These
information can only be applied in the
visualization if the corresponding vrml files
contain wildcards for the respective values (see 7.2
for details). The description is implemented in a
xml notation. On page 10 you can see a list of all
supported elements in this notation.

With the exception of the block elements any
element can be omitted. If an element is missing
from the description of a level BreakOut uses
default values for all of the elements attributes.
The same applies to missing attributes. If one or
more attributes of an element are missing
BreakOut uses default values. Only in the block

Figure 10: Differently coloured blocks depending
on hits attribute

element all attributes other than zPose have to be
specified. For zPose BreakOut assumes the value
70" since it is intended for use in a 2d
environment.

In figure 11 you can see a simple example of a
levelFile: It contains only one level called
”Level 17. This level has a ball which is slightly
larger and faster than the default ball and also has
a different colour. There are three blocks in this
level, which are arranged in a line in the middle of
the playfield. The middle one of these three blocks
needs to be hit two times to be destroyed, while
the other are removed immediately.

7.3 Starting BreakOut

To start BreakOut you just have to execute the
file ”BreakOut.py” in the "bin” directory.

Command line parameters At the moment
there are two command line parameters which can
be passed when executing ”BreakOut.py”.

levelFile This denotes the path of the file from
which BreakOut reads the descriptions of all
the levels in the game (see 7.2 for details). If
this parameter is not specified BreakOut will
try to read the file from the path
”../share/BreakOut/BreakOut_Levels.xml”

startLevel This parameter can be passed to
specify a level, which will be loaded at the
beginning of the game. If this parameter is
not specified, BreakOut will determine a
random level which will be used as the
startLevel.

breakout The SAX xml parser, which is used for parsing the levelFile
requires an enclosing group element in the xml document. This
element has no further meaning, it just has to be present.

level This element encloses all of the elements of one level. A level is
identified by the "name” attribute of this element.
ball All the relevant information about the ball in the
level are stored in this element. Possible attributes:
id id of the ball (string)

speed speed of the ball (float)
radius radius of the ball (float)

ballColour The colour of the ball Possible attributes:
green green colour value (float)
red red colour value(float)
blue blue colour value (float)
ballFile The only attribute of this element is ”path”, which specifies the
vrml file which shall be used for representation of the ball.
racket The attributes of this element define the size
of the racket in this level. Possible attributes:

length length of the object (float)
width width of the object(float)
height height of the object (float)

racketColour analog to ballColour
racketFile analog to ballFile
playfield Specifies the size of the playing area. These values are

used for the game logic as well as for the customization of
the visualization file of the playfield. Possible attributes:
length dimension on the x axis (float)
width dimension on the y axis (float)
height dimension on the z axis (float)
playfieldColour analog to ballColour

playfieldFile analog to ballFile
blockSize analog to playfield

blockColour The colour values are configured analog to ballColour.
Additionally there is an ”offset” wvalue for each colour
values. This offset is added to the colour value of a
block if its hits attribute is set to two, and added twice

if its hits is set to three or more. Possible attributes:
offsetGreen added to the green colour value depending on hits (float)

offsetRed added to the red colour value depending on hits (float)
offsetBlue added to the blue colour value depending on hits (float)
blockFile analog to ballFile

viewpoint The position of the viewpoint for the scene. Possible attributes:
xPose position on the x axis (float)
yPose position on the y axis(float)
zPose position on the z axis (float)
block The description can contain any number of elements of
this type. Each block, which should appear in the level
needs to be listed in the description. Required attributes:
id id of the block (string)
xPose position on the x axis (float)
yPose position on the y axis(float)
zPose for future use, can be omitted
hits amount of hits needed to destroy block(integer)

Figure 9: Supported elements in the xml notation for levelFile

<breakout>
<level name="Level 1">
<ball speed="0.03" radius="0.02" />
<ballColour green="0.2" red="0.8" />

<block id="Blockl" xPose="0.4" yPose="0.6" hits="1"/>
<block id="Block2" xPose="0.5" yPose="0.6" hits="2"/>
<block id="Block3" xPose="0.6" yPose="0.6" hits="1"/>
</level>
</breakout>
Figure 11: Example for levelFile

So if you want BreakOut to start with the level
”Test”, the command would look like this:
./BreakOut.py "startLevel=Test"

Other required services BreakOut is
dependent on a few other services. In theory
BreakOut works with any services which have the
required Needs and Abilities, but it is intended
to be used in conjunction with the following:

e Viewer: A visualization service based on the
Open Inventor file format.

e ARTTracker: A tracking service processing
the data sent by the ART tracking device.

e ObjectCalibration: A calibration service.

These services have to be manually started to get
BreakOut into a working state.

8 Results

This chapter provides a conclusion about this
project and the suitability of the deployed tools as
well as a summary of possible future work on the
project.

8.1 Conclusion

During the course of this project a working
implementation of the BreakOut game concept
has been finished. This implementation has been
designed as a DWARF service. It relies on other
services for parts of its functionality, namely a
tracking service and a visualization service.
According to the requirements appearance and

11

content of the game are customizable without
changes to the source code.

Overall the applied tools varied in their suitability
for this project.

DWARF This project has been developed as a
component within the DWARF framework. Using
this framework has led to some performance
problems due to the distributed layout of the
components, mostly in the form of time delays
occurring between the BreakOut and the Viewer
service . At the same time BreakOut does not
make use of the distributed properties offered by
the CORBA architecture. Still, using DWARF offered
an easy access to existing services, particularly the
Viewer and the ARTTracker services. These two
services were used for all visualization and
tracking purposes respectively.

Python Python was used for the
implementation of all classes in this project.
Python is an easy to learn, flexible language with
a clean syntax. It’s interactive mode can be very
helpful during development and testing of
software, as it reduces the need for compiler runs
speeding up the development process. Only the
lack of type checking needs getting used to.

ARTTracker The transmission speed of
positional data by the ART tracking device and
service was usually within an acceptable range. A
problem is that players can obstruct the field of
view of the cameras of the tracking device
resulting in a disruption in the stream of
positional data. If this happens the movements of

Figure 12: Implementation of BreakOut

12

the racket by the player can’t be processed
anymore. Still it was overall a reliable choice.

8.2 Future work

After completion of this project there are still
aspects of the game which could be improved.
Additionally some work could not be finished due
to the status of other projects.

8.3 New features

Gameplay of BreakOut could be improved by the
implementation of additional features. Possible
would be for example the addition of a two player
mode. Another thinkable feature would be blocks
which drop ”power-ups” upon destruction, which
could then be collected by the player by moving
the racket on these objects. These features were
omitted to further reduce the development effort.

Viewer adaptations At the time the
development was closed the current version of the
Viewer component, which was used for
visualization purposes, had some limitations.
Work on a new version was in progress but not
finished yet, forcing BreakOut to use some work
arounds for existing problems. At the moment
BreakOut sleeps for 0.5 seconds after every event
sent to the Viewer, as problems can occur if the
Viewer receives too many events within a short
time span. Additionally, it was impossible to
quickly change some properties of objects in the
Viewer. Since the colour of a block in BreakOut
depends on the amount of hits it can withstand
before destruction, it would be desirable to be
able to change the colour of a block after it has
been hit. Due to the limitations of the Viewer it
was however impossible to quickly do so and
therefore the colour is left the same. These work
arounds can be removed once the new version of
the Viewer is completed.

Due to the excessive changes in the Viewer
component it is possible that the new version is
not downward compatible.If this is the case
additional modifications to BreakOut would be
necessary to render it compatible with the Viewer
component.

13

