
Technische Universität München

Fakultät für Informatik
d d d d
ddd ddd ddd ddd

d d dd

Systementwicklungsprojekt

Visualizing Distributed Systems
of Dynamically Cooperating Services

Daniel Pustka

Aufgabensteller: Prof. Dr. Bernd Brügge

Betreuer: Dipl.-Inform. Asa MacWilliams

Abgabedatum: 15. März 2003

Erklärung

Ich versichere, dass ich diese Ausarbeitung des Systementwicklungsprojekts selbstständig
verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 10. April 2003 Daniel Pustka

Contents

1 Introduction 3
1.1 DWARF Overview . 3
1.2 Problem Statement . 4

2 Requirements Analysis 5
2.1 Functional Requirements . 5
2.2 Nonfunctional Requirements . 6
2.3 Pseudo Requirements . 6
2.4 Use Case Models . 7

2.4.1 Actors . 7
2.4.2 Use Cases . 8

2.5 Object Model . 11
2.6 User Interface . 12

3 Existing Tools 14
3.1 Overview of Graph Visualization and Layout 14
3.2 Existing Graph Visualization and Layout Tools 15
3.3 Rationale . 18

4 System Design 19
4.1 Design Goals . 19
4.2 Subsystem Decomposition . 19
4.3 Persistent Data Management . 21
4.4 Global Software Control . 21
4.5 Third-Party Software . 22

5 Object Design and Implementation 23
5.1 DWARF System Model . 23
5.2 Graph Visualization and Layout . 25
5.3 Debugging . 28
5.4 Application . 31
5.5 Auxiliary Classes . 33

1

CONTENTS 2

6 Future Extensions 36
6.1 Other Debuggers . 36
6.2 Other Views . 37
6.3 DWARF System Design with DIVE . 38
6.4 Dynamic and Incremental Updates . 40

7 Conclusion 41

Bibliography 41

Chapter 1

Introduction

To facilitate the development of distributed augmented reality applications, the chair of
applied software engineering at TU München has developed the DWARF software archi-
tecture. The heart of this architecture is a middleware which dynamically locates and
connects services distributed across a network.

Applications built on top of DWARF inherently are self-assembling. Developers who
are working with DWARF systems often face the problem that it is difficult to see how the
components, spread all over the network, are connected by the middleware.

The solution to this problem proposed here is DIVE (DWARF Interactive Visualiza-
tion Environment), a visualization tool for DWARF systems which I have designed and
implemented as a system development project (SEP).

This document is the DIVE manual both for users and developers. It’s basic structure
follows the methodology described in [10]. The document starts with a chapter about
requirements analysis, followed by a discussion of existing graph layout tools. Chapters 4
and 5 will give details about the system and object design of DIVE. Chapter 6 describes
possible future extensions.

New users of DIVE are recommended to read the requirements analysis chapter which
shows how the software is operated from a user’s perspective. The other chapters are
more technical and aimed towards future developers who need to understand the internal
structure of DIVE.

1.1 DWARF Overview

Before I can go on explaining DIVE, it is necessary to understand the basic concepts of
DWARF. The following section gives a brief overview of the aspects relevant to DIVE. For
further reading, an in-depth discussion of DWARF can be found in [13, 8, 1].

A DWARF system consists of several cooperating services, located on different station-
ary or mobile computers. Each service has a set of needs and abilities, which describe how
the service can communicate with other services. The most important property of a need
or ability is the protocol that is used for communication. In addition, an arbitrary number

3

CHAPTER 1. INTRODUCTION 4

of attributes can be defined which give more detailed information about what kind of data
an ability provides or a need expects. To limit the selection of communication partners,
predicates can be given, which the other service has to fulfill.

When the supported communication protocols of a need and an ability match and all
predicates are satisfied, the DWARF middleware dynamically connects the two services.
DWARF is designed for distributed applications, so this works across the network, but
preference is given to local services. When new services are added to the system or existing
ones are removed from it, the middleware reacts to these changes and adds or removes
connections between services.

The part of the DWARF middleware which is responsible for locating and connecting
services is called the service manager. Usually one instance is running on each computer,
acting on behalf of the local services and advertising them on the network.

1.2 Problem Statement

Finding out what services are running on the various computers and how the DWARF
middleware has connected them currently is a tedious task. For that purpose, a developer
usually would open terminal windows that contain the diagnostic output of all participating
software components (the service manager on the need’s side and the two services). As
the output most of the time also contains other data, finding the right information there
is difficult.

The purpose of this SEP is to develop a visualization tool for DWARF systems. The
software must take account of the distributed aspect of DWARF systems by collecting
information about the services from the different service managers. This information is
then used to draw a two-dimensional diagram showing the currently active services and the
connections between them. Caring about the dynamic aspect of the system, this diagram
should always be kept up-to-date to reflect the changes in the system.

A diagram can only contain limited information about the services themselves. There-
fore, by clicking on a component in the diagram, a developer should be able to get addi-
tional information about it, such as service attributes, state of the service, name of the
host computer, communication protocols, etc.

Another problem comes up when the system is not working as expected. If the reason is
not immediately clear, the communication between the services should be among the first
things that are checked. To help in the debugging process, the visualization tool should
provide means to monitor the communication between services. The first version only
includes support for CORBA structured events, but the application should be extensible
to other forms of communication.

Chapter 2

Requirements Analysis

This chapter gives a more formal and more detailed description of the requirements for
a DWARF visualization tool. The chapter’s structure roughly follows the guidelines for
Requirements Analysis Documents (RADs) given in [10].

Readers who are new to DIVE, should read the section about functional requirements
in order to get an overview of the tool. If you want to learn how to use DIVE, reading the
use cases is recommended as they show step-by-step how to operate the application.

2.1 Functional Requirements

The following sections give a high-level overview of the functionality of the DIVE tool.

Collect Structural Information The information about the structure of a DWARF sys-
tem usually is distributed across several computers. Each service manager only knows
it’s own services. The visualization tool therefore first has to discover all running ser-
vice managers. It then contacts each of them in order to get information about the
state of it’s services and the connections between them. This data has to be combined
to form a complete and consistent picture of the system.

Display Graph and Attributes The main screen of the visualization tool displays a
two-dimensional graph showing the services as nodes. The edges represent the con-
nections between services that have been established by the service manager.

Services are shown in a fashion similar to UML class diagrams. The service name
is on top with the service’s needs and abilities listed below. A preference dialog,
available from the menu, allows the user to switch off the needs and abilities, giving
a more compact view of the system.

Additional attributes of a service, a need or an ability can be obtained by clicking
on it. Such attributes could be service state, hostname or supported communication
protocols.

5

CHAPTER 2. REQUIREMENTS ANALYSIS 6

The user can choose to refresh the graph manually or let the application do that in
fixed intervals.

Information Filtering To reduce the complexity of the graph, the visualization tool
provides settings that allow the user to view only parts of the DWARF system. The
user should be able to select or hide services that have certain attributes.

Export To File The application allows the graph to be exported to a PostScript file that
can be imported into a graphics or word processing application.

Debugging When the user has selected a need or an ability that supports the “CORBA
event sender” communication protocol, a button labeled “View Events” is available.
When clicking on it, a new window opens which displays all CORBA events that are
sent by the selected need or ability. If the event contains composite data structures,
they are decomposed into their elements to make the content human-readable.

2.2 Nonfunctional Requirements

“Nonfunctional requirements describe user-visible aspects of the system that
are not directly related with the functional behavior of the system.” [10]

Graphical User Interface The user interface should be intuitive to use and provide a
familiar “look and feel”.

User Preferences All preference settings are automatically stored in a configuration file
without requiring further interactions by the user.

Response Time All tasks that may possibly last longer than two seconds shall be per-
formed in the background without interrupting the user’s work.

Extensibility DIVE should be extensible, especially with respect to new user interfaces
and debugging of other communication protocols. More extensions are proposed in
chapter 6.

2.3 Pseudo Requirements

“Pseudo requirements are requirements imposed by the client that restrict the
implementation of the system.” [10]

The DWARF Software Environment

The visualization tool must compile and run in the current DWARF software environment.
Therefore it must be compatible with the following software:

CHAPTER 2. REQUIREMENTS ANALYSIS 7

• Linux 2.4

• GNU autotools (automake, autoconf)

• OmniORB

2.4 Use Case Models

DIVE

Visitor

User

Demonstrate System Design

Startup

Shutdown

Automatic Update

Change Preferences

Select Service

Monitor Events

Update View

Service Manager

Event Sender

Figure 2.1: Overview of all use cases. The dashed lines represent an <<includes>>
relationship.

2.4.1 Actors

User The User is the main user of the DIVE tool described in this document. He uses
DIVE for debugging and to explain the DWARF system to Visitors.

Visitor The Visitor does not directly interact with DIVE. Instead, the User uses DIVE
to explain a DWARF system to a Visitor.

DWARFServiceManager The DWARFServiceManager is the most important part of
the DWARF middleware. An overview of how it works was given in section 1.1.
DIVE communicates with the DWARFServiceManager in order to retrieve information
about the DWARF system.

CHAPTER 2. REQUIREMENTS ANALYSIS 8

EventSenderService The EventSenderService is a DWARF service which has a need
or ability of type PushSupplier, which sends asynchronous events to other services.
The use cases show how DIVE can be used to read those messages.

2.4.2 Use Cases

Demonstrate System Design

This use case describes how DIVE is used by a User in order to demonstrate a system
design to a Visitor.

Participating actors Initiated by User

Visitor

Entry condition 1. The User starts the application (includes ProgramStartup).

Flow of events 2. The User explains the system design to a Visitor. To show
details about a service, the User clicks on a node in the diagram
(includes SelectService).

3. When the User has changed the system (e.g. by starting a new
service), DIVE automatically updates the graph to show the
changes (includes UpdateView).

4. The User continues with steps 2 and 3.

Exit condition 5. The User closes the application (includes ProgramShutdown).

Monitor Events

This use case shows how DIVE is used to monitor events from an EventSenderService.

Participating actors Initiated by User

EventSenderService

DWARFServiceManager

Entry condition 1. The User selects an ability of type PushSupplier (includes
SelectService).

Flow of events 2. The User selects “View Events” in the ability’s properties win-
dow.

3. DIVE opens a new event monitoring window.

4. DIVE creates a new EventReceiverService.

5. The DWARFServiceManager connects the newly created service
with the EventSenderService selected in step 1.

6. The EventSenderService sends an event which is received by
the EventReceiverService. DIVE parses and displays it in the
EventMonitorWindow.

Exit condition 7. The User closes the EventMonitorWindow.

CHAPTER 2. REQUIREMENTS ANALYSIS 9

Program Startup

This use case describes the actions performed by DIVE at program startup.

Participating actors Initiated by User

DWARFServiceManager

Entry condition 1. The User starts the application.

Flow of events 2. The application displays the main application window.

3. The application loads the User’s preferences from a configura-
tion file.

4. The application establishes a communication channel with all
available DWARFServiceManagers.

5. DIVE gathers information about running services from the
DWARFServiceManagers and presents it as a graph in the
GraphView (includes UpdateView).

Exit condition 6. The application is ready respond to further commands from the
User.

Program Shutdown

The Program Shutdown use case describes what happens when the application is closed.

Participating actors Initiated by User

Entry condition 1. The User chooses “Quit” from the menu.

Flow of events 2. DIVE removes all application windows.

3. The application stores the user’s preferences into the configura-
tion file.

4. DIVE cuts all communication channels to
DWARFServiceManagers and EventReceiverServices.

Exit condition 5. The application is completely removed from memory.

Update View

Update View describes how the application retrieves the system structure and presents it
to the user.

Participating actors User

DWARFServiceManager

CHAPTER 2. REQUIREMENTS ANALYSIS 10

Entry condition 1. The Update View use case is invoked in three different ways:

• Automatically at program startup.

• Automatically by a timer when “Automatic Updating” is
enabled.

• Manually when the User selects “Update View” from the
menu.

Flow of events 2. The application contacts all known DWARFServiceManagers and
gets their information about the DWARF system. This infor-
mation is used to update the DWARFSystemModel.

3. DIVE filters the information and creates a graph description
which is passed to the GraphLayouter.

4. The application displays the resulting graph arrangement in the
GraphView.

Exit condition 5. The GraphView shows the current state of the system.

Special requirements As steps 2 and 3 might consume an arbitrary amount of time, they
are performed in the background without interrupting the user’s
work.

Change Preferences

In this use case I describe, how the User can change the application’s settings. Examples
for such settings are: Path to layout program, display size, graph details, etc.

Participating actors Initiated by User

Entry condition 1. The User selects “Preferences” in the “View” menu.

Flow of events 2. The application displays a dialog which contains controls for all
settings.

3. The User changes the settings and confirms by clicking the “OK”
button.

4. The application updates the display with the new preferences
(includes UpdateView).

Exit condition 5. The display conforms to the new preferences.

Automatic Updating

This use case describes how the User tells the application to update the graph in fixed
intervals.

CHAPTER 2. REQUIREMENTS ANALYSIS 11

Participating actors Initiated by User

Entry condition 1. The application has started and “Continuous Updates” is dis-
abled.

Flow of events 2. The User selects “Continuous Updates” in the “View” menu.

3. The “Continuous Updates” menu item gets a check mark to
indicate that the function is activated.

Exit condition 4. The graph display is updated every 5 seconds (includes Update
View).

Special requirements Automatic updating can be disabled in the same fashion.

Select Service

This use case describes how a user gets additional information about a service.

Participating actors Initiated by User

Entry condition 1. The application has started and some services are visible in the
main window.

Flow of events 2. The user clicks on the name of a service.

3. All connections of the selected service are highlighted.

Exit condition 4. A new PropertiesWindow becomes visible. It shows a list of all
attributes of the selected service.

Special requirements There is always at most one PropertiesWindow visible. If there
already is one, it will be reused for the new service.

2.5 Object Model

This section introduces the analysis objects that can be extracted from the use cases.

DWARFSystemModel

The DWARFSystemModel contains the application’s knowledge of the DWARF system struc-
ture. The model not only stores that information, but also is responsible for acquiring it
and keeping it up-to-date. The DWARFSystemModel registers itself as a service within the
DWARF middleware in order to get connections to all service managers. Therefore the
DWARFSystemModel is both an entity object as well as a boundary to the DWARF system.

The DWARFSystemModel has information about services, their needs and abilities and
about sessions. Sessions represent the connections between services.

CHAPTER 2. REQUIREMENTS ANALYSIS 12

UserPreferences

The UserPreferences are all settings that the User can change in the application. This
includes the options that can be explicitly specified in the configuration dialogs, but also
implicit parameters like window sizes and positions. For commodity the preferences are
automatically stored in a configuration file and loaded at program startup.

GraphView

The GraphView is the part of the user interface which displays information as a graph. It
should be able to perform automatic graph layout.

PropertiesWindow

The PropertiesWindow is a window that is used to display additional information about
a service, a need or an ability. It contains a list with all attributes that are made available
by the DWARFServiceManager. A PropertiesWindow pops up when the user clicks on an
object in the GraphView.

EventReceiverService

The EventReceiverService is a boundary object to other DWARF services. The applica-
tion creates an instance of this service when the user wants to view the events that are sent
by a PushSupplier ability. The service has it’s needs setup such that the service manager
always connects it to the selected PushSupplier ability.

EventMonitorWindow

The EventMonitorWindow displays the events that are received by an
EventReceiverService. The events are decomposed into it’s elements and dis-
played as a tree with two columns. The left column shows the name of the element, the
right one it’s value.

PreferencesDialog

The PreferencesDialog can be activated from the menu. It contains controls for all global
application settings.

2.6 User Interface

The following pictures give an overview of what DIVE looks like.

CHAPTER 2. REQUIREMENTS ANALYSIS 13

Figure 2.2: DIVE’s main screen. It shows how three Sheep services are connected to each
other and to a SheepReceiver. We also see how DIVE is connected to a ServiceManager.

Figure 2.3: On the left hand side we see a PropertiesWindw displaying the attributes of
the DIVE service. The right image shows an EventMonitorWindow receiving PoseData
from a Sheep service.

Chapter 3

Existing Tools

In the following chapter I will justify my choice of a graph layout tool. It may also serve
as a starting point for anyone who wants to make an application that displays graphs with
automatic layout.

3.1 Overview of Graph Visualization and Layout

To be able to display the system as a graph, there first has to be a way to arrange the
nodes and edges automatically. As graph layout still is an active research area, doing it on
our own go would far beyond the scope of this project. Fortunately, many programs and
libraries for that purpose are available which will be discussed in this section.

There are basically four different ways to build an application with graph layout capa-
bilities:

1. Use an existing graph viewing tool with it’s own GUI and extend it. This can be
relatively easy if the tool has an API or an interface to scripting languages.

2. Write your own GUI but use an existing graph editor component. The application
writes the graph into a data structure and passes it to the graph component which
does layout and rendering. User input is handled through callback functions.

3. Write your own GUI and use a library for graph layout only. The application writes
the graph into a data structure which is passed to the layout library. Drawing of the
resulting arrangement is done again by the application.

4. Write your own GUI and call an external program for layout. This is basically the
same as using a library, but communication is not done through data structures
in memory but by exchanging textual graph descriptions through Unix pipes or
temporary files. Additional overhead is introduced by string parsing and process
creation.

14

CHAPTER 3. EXISTING TOOLS 15

There are a number of features that are common among many graph layout tools. The
following list describes those that might be useful for DIVE.

Incremental Layout Takes the description of a graph where some nodes already have a
position. In the resulting arrangement these nodes should change their position only
when absolutely necessary. Incremental layout is particularly useful for visualization
of dynamic systems. When there is only a small change in the system, the changes
to the graph arrangement should also be small.

Records To allow the needs and abilities to be displayed in a UML-like fashion, the graph
layouter should allow nodes to be divided into multiple fields (records). Routing edges
from one record to another should also be supported.

Ports This concept allows the user to specify areas on the border of a node where edges
can be placed. Ports allow the creation of effects similar to records.

Clusters or subgraphs To increase the clearness of the diagram, it should be possible
to arrange nodes with similar properties next to each other. This could be useful to
group together DWARF services which run on the same computer or belong to the
same subsystem.

To allow the visualization tool to be distributed together with the DWARF middleware,
the following discussion will focus on software which is available under a open source license.
Commercial programs or libraries are only mentioned for completeness.

3.2 Existing Graph Visualization and Layout Tools

This section gives an overview of exiting graph layout tool that are available on the internet.

VCG Tool [22]

Author Universität des Saarlandes, Saarbrücken
License open source (GPL)
Distribution source and binary

The VCG (Visualization of Compiler Graphs) tool is one of the two most popular freely
available graph layout tools. Unfortunately it has not been updated since 1995 because the
developer now works for ILOG (“JViews”, see below) and was employed by TomSawyer
Software before (“Graph Layout Toolkit”, see below).

The software reads a textual graph description and outputs the graph as a PostScript
or bitmap image or displays it in a X11 window. Unfortunately there is no output format
that only includes the coordinates of nodes and edges, making it practically impossible to
use only the layout capabilities without actually drawing a diagram. VCG supports both
records and incremental layout.

CHAPTER 3. EXISTING TOOLS 16

The C source code of the whole software is available. However the part with the
actual layout algorithms is “uglified” so there is no practical way to modify it. Extraction
of the relevant parts still is possible, but would be time-consuming due to the lack of
documentation.

Graphviz [5]

Author AT&T Labs Research
License open source
Distribution source and binary

Graphviz is a collection of standalone programs for graph layout. The dot layouter uses a
hierarchical algorithm that tries to find tree-like structures in the input graph. Neato is a
so-called “spring layouter” which uses a system of attracting and repelling forces, trying
to minimize the overall energy. The other programs include dotty, a graph viewer for X11
displays.

Both layout programs read the graph description in the proprietary dot format. Avail-
able output formats include, among various vector and bitmap graphics types, the “plain”
format which is simply a list of coordinates that can easily be parsed for display in other
programs.

The graph layout algorithms are located in libraries that could be used directly, but
unfortunately the interface was not documented by the time this project started. Dot
supports records and clusters. Neato can be used for incremental layout - but does not
fully support records and clusters.

Graphlet [20]

Author Universität Passau
License free for noncommercial use
Distribution binary, source code on request

Graphlet is a toolkit for graph editing and drawing applications. It consists of a graph
editor which can be extended using a scripting language based on Tcl/Tk. Unfortunately,
even the binary distribution is only available upon request.

LEDA [4]

Author Algorithmic Solutions
License commercial
Distribution binary and source code licenses available

LEDA is a library for efficient data types and algorithms. It includes algorithms for graph
layout as well as a window component for graph visualization and editing. LEDA now is a
commercial product, although previous version developed at MPI were available for free.

CHAPTER 3. EXISTING TOOLS 17

VGJ [6]

Author Auburn University
License open source (GPL)
Distribution java source code

VCJ is a graph editor written in Java. It’s layout capabilities are not as advanced as those
of VCG or Graphviz. VCJ does not support records and is not specifically designed to be
used in other applications.

AGD [3]

Author TU Wien, Uni Köln, MPI
License free for academic use, registration required
Distribution binary only (Linux/Sparc/Windows)

AGD is a library of algorithms for graph drawing. It uses the commercial LEDA libraries
(see above) and includes a large number of graph layout algorithms.

GDToolkit [21]

Author Università di Roma Tre
License commercial, free for academic use (limited version), registration required
Distribution binary only (Linux/Sparc/Windows)

Library for graph layout, based on the commercial LEDA library. Can be used as C++
library or as a standalone program. Unfortunately only limited versions are available for
free.

JViews [12]

Author ILOG
License commercial
Distribution binary (JavaBeans)

Commercial Java packages for graph layout and display.

Graph Layout Toolkit [18]

Author Tom Sawyer Software
License commercial
Distribution binary (Windows/Linux/Sparc/MacOS9)

Commercial library for graph layout. Includes many different graph layout algorithms,
some support ports.

CHAPTER 3. EXISTING TOOLS 18

aiSee [2]

Author AbsInt
License commercial
Distribution binary

Commercial standalone graph viewer, based on VCG (see above).

daVinci Presenter [9]

Author b-novative
License commercial
Distribution binary

Standalone program for graph drawing and editing. DaVinci has an API that allows it to
be used as a visualization component in other programs. Ports are supported.

GEF [11]

Author (open source project)
License open source (BSD licence)
Distribution source code

The Graph Editing Framework is a java library for graph editing. Unfortunately it’s
automatic layout capabilities are only rudimentary. GEF is used by the argoUml CASE
tool.

3.3 Rationale

The final decision is to use dot from the Graphviz collection for graph layout. It is free
software and offers many powerful layout features such as records or clusters. The devel-
opment of it is ongoing, so bugs are likely to be resolved. DIVE calls dot as an external
layout tool, using Unix pipes for communication. Therefore no complex API has to be
learned. If performance should become an issue, DIVE can be adapted to use the library
version of dot, especially now that the documentation is available.

Another advantage of dot is the compatibility with neato, the other layouter from the
Graphviz collection. Although it does not fully support all features, neato can be used if
a different layout is desired.

Chapter 4

System Design

The purpose of this chapter is to give an overview over the structure of the application. It
is mainly of interest for future developers who wish to extend the application.

The structure of the chapter roughly follows the conventions for system design docu-
ments (SDDs) as described in [10].

4.1 Design Goals

Reusable components All components of DIVE should work independently of each
other, so they can be reused easily in future projects. This also results in a clean
design with clear responsibilities.

Extensibility DIVE should be extensible, especially with respect to the extensions pro-
posed in chapter 6.

Compatibility with DWARF The DIVE tool must work together with the middleware
and existing DWARF services.

4.2 Subsystem Decomposition

This section describes how the DIVE architecture is devided into four subsystems.

Overview

The architecture of DIVE follows the Model/View/Controller (MVC) design pattern.
The DWARF System Model subsystem is responsible for acquiring and storing informa-
tion about the structure of the system, the Graph Visualization and Layout subsystem
arranges and displays the graph and the Application subsystem acts as a controller.

19

CHAPTER 4. SYSTEM DESIGN 20

ApplicationDebugging Subsystem

Graph Visualization & LayoutDWARF System Model

DebugFactory

DIVEApp

GraphLayouter
DWARFService

DWARFSystemModel

DWARFModelEnumerator

* GraphLayout

GraphView

PushSupplierDebugger

creates

DebuggerCreator

PushSupplierDebuggerCreator

*

Figure 4.1: The four subsystems of the DIVE architecture with their most important
objects.

DWARF System Model

The DWARF System Model represents the structure of the DWARF system. It can be seen
as the model in the context of a MVC architecture. It’s purpose is to connect to the
DWARF middleware, to read structural information from the service managers and to
make this information available to the rest of the application.

The subsystem runs independently of the other subsystems, so it can easily work with
different user interfaces or be reused in other applications. One major design consideration
was to provide concurrent access to the data structures, allowing a worker thread to update
the data while multiple views are accessing it.

The main classes of the DWARF System Model are DWARFModelEnumerator which, fol-
lowing the Bridge design pattern, provides an abstract interface to the data structures,
and DWARFSystemModel which encapsulates the functionality of the whole subsystem in
one class.

Graph Visualization and Layout

In the MVC approach, the Graph Visualization and Layout subsystem represents the
view. It is designed to be a general graph viewer, completely independent of anything
DWARF-related. Therefore all user input is delegated back to the application which takes
care of the appropriate actions. The subsystem must support records, in order to allow a
graph display similar to UML class diagrams.

CHAPTER 4. SYSTEM DESIGN 21

The most important class is GraphView, which encapsulates the functionality of the
subsystem in form of Qt widget (see section 4.5). GraphView uses the GraphLayout class
to maintain the graph data structure and GraphLayouter, an abstraction for graph layout
algorithms (Strategy design pattern).

Application

The Application subsystem, in particular the DIVEApp class, provides the glue between
the components. A DIVEApp object is instantiated by the Qt framework. This “root
object” is responsible for creating the other objects and for mediating between them.
It translates data between the DWARF System Model and the Graph Visualization and

Layout subsystems and reacts to user input. Other features provided by the Application

subsystem are the main window frame, the menu and the user preference options.
In the MVC pattern, the Application subsystem is the controller.

Debugging

The Debugging subsystem provides all components that are related to debugging a service,
a need or an ability. At the moment only viewing of CORBA structured events sent by a
PushSupplier ability is supported, but the subsystem is designed to be extendible to other
forms of communication. This extensibility is accomplished by using the factory pattern
which is realized in the DebugFactory class.

Components of the Debugging subsystem should provide their own user interface and
have only few interactions with other subsystems.

4.3 Persistent Data Management

The only data that DIVE needs to store persistently are the user preferences. Saving and
loading is done using the Settings class from the Qt framework which provides simple
methods for storing strings and integer values.

4.4 Global Software Control

Event-driven UI As the user interface is based on the Qt framework, it’s event-driven
architecture is be used, including the Qt-specific signal-and-slot mechanism.

Worker threads DIVE uses worker thread tp perform lengthy tasks which otherwise
would disturb the user. Examples for such tasks are updating the DWARF System

Model and performing the graph layout. Worker threads communicate with the
main application by posting asynchronous events into the main event queue, using
the Qt event facilities.

CHAPTER 4. SYSTEM DESIGN 22

4.5 Third-Party Software

As DIVE is a part of the DWARF distribution, third-party-components which are already a
fixed part of the DWARF environment (e.g. OmniORB, GNU autotools) are not mentioned
here.

DIVE relies on the following additional third party software:

• Qt is used for user interface, global software control and storage of user preferences.
As all DWARF applications inherently are multi-threaded, the multi-threaded ver-
sions of the Qt libraries (qt-mt) have to be used.

• Graphviz provides the graph layout capabilities (see chapter 3).

Chapter 5

Object Design and Implementation

This chapter is rather technical and intended for future developers who wish to change or
extend DIVE. Here I will give general information about how to use the classes that DIVE
is made of. If you are interested in the exact signature of each method, you should have
a look at the header files. The class and method documentation there is compatible with
the Doxygen tool, which can be used to extract a nicely formatted and cross-referenced
documentation from the source code.

The chapter is divided according to the four subsystems. Classes that do not belong to
a particular subsystem are described in a fifth section.

5.1 DWARF System Model

DWARFModelEnumerator

DWARFModelEnumerator provides an abstract interface for concurrent access to the ser-
vice descriptions stored in the DWARF System Model data structures. The methods
GetFirstService and GetNextService are called to enumerate all services. For enu-
meration string identifiers are used as iterators. The advantage of string identifiers over
direct pointers is that enumeration can continue even when the current service was deleted
by another thread. This is because enumeration is done in alphabetical order, so the fol-
lowing object can always be determined unambiguously. String identifiers can be narrowed
down to a DWARFService object by calling LockService. The caller must unlock any
locked service description after usage by calling the Unlock method of the returned object.

DWARFSystemModel

The DWARFSystemModel class encapsulates the functionality of the whole DWARF System

Model subsystem. It is the only object that has to be instantiated by anyone who wants
to use the subsystem. The class implements the DWARFSystemModel interface for service
enumeration.

23

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 24

DWARF System Model

DWARFService

Attributes

Ability Need Session
*

*

ServiceManagerSession

DWARFSystemModel

DWARFModelEnumerator

*

*

*

Figure 5.1: Objects of the DWARF System Model subsystem.

Before an object of this class is created, the static method Init must be called to
initialize the CORBA orb. Init should only be called once.

In order to find all running service managers, a DWARFSystemModel object registers
itself as a “DIVE” service within the DWARF middleware. It has a need of type “Service-
Manager”, which causes the middleware to connect it to all available service managers as
the service managers are DWARF services themselves.

ServiceManagerSession

The ServiceManagerSession class is used internally by the DWARFSystemModel. An in-
stance is created each time the middleware calls the newSession method in order to es-
tablish a connection to a service manager.

DWARFService

The DWARFSystemModel creates an instance of the DWARFService class for each DWARF
service that is found on the network. The constructor reads all kinds of relevant information
from the service. This data is made available by the various get... methods. getNeeds

and getAbilities can be called to recursively query the needs and abilities of the service.
In order to function in a multi-threaded environment, the class provides Lock and Unlock

methods.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 25

Service ManagerDIVE

:DWARFSystemModel ServiceManager ServiceDescription:DWARFService :Need NeedDescription

Update()
getServiceDescriptions()

getServiceDescription()

<<create>>
getAttributes()

getNeeds()

getNeedDescription()

<<create>> getAttributes()

[For each need]

[For each service]

Figure 5.2: Sequence diagram showing the interactions between the classes of the DWARF

System Model subsystem and the service manager when an update is performed.

Need and Ability

Similar to DWARFService, the Ability and Need classes provides access to information
about a needs and abilities. DWARFService automatically creates Need and Ability objects
when service information is read from the service manager.

Attributes

The Attributes class is inherited by DWARFService, Need and Ability. It gives access to
additional attributes that may be defined for these entities. Attributes is derived from
KeyValueList, an associative list of string pairs (std::map<string, string>).

Session

Session provides information about the communication partner, such as hostname and
service-id. Session information is always located on the side of the need only.

5.2 Graph Visualization and Layout

GraphView

GraphView is a Qt widget which encapsulates the functionality of the Graph

Visualization and Layout subsystem. It’s purpose is to provide a generic Qt component
for graph display with automatic layout.

Nodes and edges are added with the addNode and addEdge methods. addNode accepts
a unique node identifier string and a list of strings pairs, which define the ports of the node.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 26

Graph Visualization & Layout

GraphLayouter

DotLayouter

GraphLayout

NodeEdge

**

GraphNodeWidget
GraphView

Figure 5.3: Objects of the Graph Visualization and Layout subsystem.

The first string in a pair is the port identifier, which should be unique (with respect to the
node). The second string gives the text label that is displayed in the user interface. If the
node should be visible, at least one port must be supplied, as a node does not contain text
labels by itself.

GraphView supports user feedback by emitting the clicked signal when the user clicks
on a node. The signal contains parameters that describe which node and port was selected.

To use the automatic layout facilities, call Layout. The ColorEdges method can be
used to highlight all edges that are connected to a particular node or port. Additional
methods include Clear, which removes all edges and nodes, and Print which writes the
graph to a PostScript file if the layouter supports it.

GraphLayout

GraphLayout is used internally by GraphView to store the graph data structures. It simply
consists of two lists of Edge and Node objects and provides methods to access and modify
them.

Edge and Node

The Edge and Node classes are part of the GraphLayout and store the graph information.
For efficient access, edges contain pointers to the nodes they connect and nodes contain
lists of all edges they are connected to.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 27

GraphNodeWidget

Each Node is associated with a GraphNodeWidget, which represents the user interface part
of a node. The widget is capable of displaying multiple text labels in a UML-like fashion
with separators between them. Text labels can be defined by passing a list of KeyLabel

pairs to the Update method. A separator is created when the identifier part of the KeyLabel
is empty. Texts can be prefixed with a format description. “\b” means bold text and “\c”
means that the text should be centered.

When a label is clicked, GraphNodeWidget emits a clicked signal with the label identifier
as parameter.

GraphLayouter

The GraphLayouter class defines an abstract interface for graph layout algorithms. While
normal graph layout could have been achieved easily with just one method call, the class
defines three methods. The rationale behind this is that, as graph layout might consume
a larger amount of time, it should be possible to perform it in a worker thread.

The Init method receives a pointer to a GraphLayout object and should copy the
information from it into it’s internal data structures. Then DoWork is called which should
perform the actual layout work. As it might be called from a worker thread, DoWork

implementations should be extremely careful when interacting with other components.
After the work is finished, the application calls UpdateGraph. There the implementation
should write the result, i.e. the node and edge positions, back to the GraphLayout, which
is again passed as a parameter.

DotLayouter

DotLayouter implements the GraphLayouter interface and calls the dot tool (cf. chapter
3 for graph layout. For communication with dot, DotLayouter uses the IOFilterStream

class which relies on Unix pipes for data transport.
When Init is called, the class creates a textual graph description in the dot format.

This description is written to stdin of the dot process. DoWork simply waits until data is
available on dot’s stdout port. The resulting graph description with positional parameters
in parsed in UpdateGraph and written back to the GraphLayout. Because the edge positions
are described by Bezier splines, the BuildCubicBezier helper function is used to convert
splines to a number of points with approximately equal distance.

In addition to the methods from GraphLayouter, DotLayouter has a Print method,
which causes dot to output the result in PostScript format. The method can be used to
export the graph to other applications.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 28

Debugging

DebugFactory

DebugServicePushSupplierDebugDialog

PushSupplierDebugger

creates

DebuggerCreator

PushSupplierDebuggerCreator

*

Figure 5.4: Objects of the Debugging subsystem.

5.3 Debugging

DebugFactory

The DebugFactory is the central part of the Debugging subsystem. As the name suggests,
the class realizes an abstract factory design pattern that is able to create debugger objects.
The interface is divided into two main function groups.

The FindDebugger methods are used to query which debuggers are available for the
given object. The list returned by all of these methods includes a textual description of
the action performed by the debugger (e.g. “View Events”) and a unique ID which can
be used to create an instance of the debugger. FindDebugger methods are available for
DWARFService, Need and Ability objects (see section 5.1). The application typically calls
FindDebugger in order to show the user a list of possible debuggers.

After the application has queried which debuggers are available for the selected service,
need or ability, it can call CreateDebugger with one of the valid debugger IDs returned
by FindDebugger. The DebugFactory then creates the debugger object and passes it the
description of the object it should attach to.

The DebugFactory does not decide by itself which debuggers can be used for an object.
Instead it delegates that task to one or more DebuggerCreator objects.

DebuggerCreator

When implementing a new debugger, the developer must also derive a class from
DebuggerCreator to register the debugger with the DebugFactory. DebuggerCreator

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 29

Figure 5.5: DIVE receiveing events from the sheep ability of a Sheep service. The graph
shows the Dbg27390-0 Service created by DIVE in order to attach to the Sheep service.

has HaveDebugger and CreateDebugger methods for services, needs and abilities in order
to determine debugger availability and for debugger creation.

PushSupplierDebugger

PushSupplierDebugger is a debugger implementation that receives events from an ability
of type PushSupplier. This ability type communicates with other services by sending
CORBA structured events using the CORBA notification service [15].

In order to connect to the given ability, the class creates a DebugService object, which
then adds a new service to the DWARF system and gives it a need of type PushCon-
sumer. By specifying a service ID and an ability name, the predicates of this need instruct
the service manager to connect it to only one particular ability. Figure 5.5 shows DIVE
debugging a PushSupplier service.

PushSupplierDebugger implements the CosNotifyComm::StructuredPushConsumer

interface. When an event is received, the CORBA notification service calls the
push structured event method. Because this may happen at any time during program
exection, PushSupplierDebugger packs the event’s payload into an AnyEvent which is then
added to the Qt event queue. The main event loop later delivers the event synchronously
to the event method where it can safely be processed and displayed.

PushSupplierDebugger creates a PushSupplierDebugDialog object, which provides
the user interface.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 30

User :PropertiesDialog :DIVEApp :DebugFactory
:PushSupplier

Debugger
:PushSupplier
DebugDialog :DebugService ServiceManager

clicks
ButtonClicked()

CreateDebugger
<<create>>

<<create>>
<<create>> newService-

Description()

registerService()

EventSender
Service

push_structured_event()

Update

event()

Figure 5.6: Sequence diagram showing how the “MonitorEvents” use case is realized by
DIVE. It starts when the user clicks on “View Events” and includes handling of the first
event received.

Handling CORBA any values

CORBA structured events consist of a header and a body part [15]. The header has both
fixed and optional fields which define domain, type and event name, priority, reliability,
etc. The body part has a so-called “Filterable Body Part”, consisting of name-value-pairs,
and a “Remaining Body Part”. While it is possible to use the filterable body fields to
store information, DWARF applications typically only use the remaining body part. It
may contain almost arbitrary data, so DIVE cannot know at compile time how the event
payload is structured.

The “Remaining Body Part” simply is an object of class “any”. The “any” type may
- as the name implies - contain anything, as long as it’s type is known to the CORBA en-
vironment. This includes basic data types, such as integers and strings, but also complex
structures like arrays, sequences or structs. “any” objects always carry their type infor-
mation with them. If the receiving application already knows the real type of an “any”
object, it can simply cast it and the CORBA libraries perform the necessary conversions.
If the type is unknown, things get more complicated.

Fortunately the CORBA specification [14] provides the DynAny class for that case.
DynAny objects can be constructed from an “any” and support operations for type identi-
fication and iteration of it’s members. The most important methods of the DynAny class
are described in the following table. For a full documentation of all of it’s members and of
derived classes refer to the CORBA specification [14].

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 31

TypeCode type() Get the object’s type.
Boolean next() Move the member pointer forward.
DynAny current component() Get the current member.
Boolean get boolean(),

long get long(), string

get string(), etc.

Get the content of a basic data type.

Using these basic methods, an application can easily walk through arbitrary data types.
The necessary steps are:

1. Use type() to check the data type of the object.

2. If the object is a basic data type, use one of the get xxx methods to get it’s value.
If the object is a composite structure (array, struct, etc.) use the next() and
current component() methods to recursively query the content.

PushSupplierDebugDialog

PushSupplierDebugDialog is the user interface part of the PushSupplierDebugger. It
has it’s own window frame and a list view for the event content. See section 2.6 for a
screenshot.

PushSupplierDebuggerCreator

PushSupplierDebuggerCreator implements the DebuggerCreator interface to register
the PushSupplierDebugger within the DebugFactory.

DebugService

The DebugService class creates a new DWARF service with only one need. By defining a
predicate, the service manager will connects this need to the given ability. The need name
will always be “client”. The name of the new service is constructed as follows:

"Dbg" + <process ID>+ "-" + <counter (starting at 0)>

5.4 Application

DIVEApp

DIVEApp is the main class of DIVE. After an object of this class is instantiated by the
main() function, it creates a DWARFSystemModel and a DebugFactory object. DIVEApp is
derived from Qt’s QMainWindow class and also provides the main user interface. It creates
a new main window with a menu, a status bar and a GraphView widget which covers the
rest of the window.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 32

Application

DIVEConfiguration
DIVEApp

DWARFFilter

PropertiesDialog

PreferencesDialog

Figure 5.7: Objects of the Application subsystem.

DIVEApp implements a mediator pattern between the other subsystems. When the user
selects “Update” in the menu, the information from the DWARFSystemModel is translated
into a graph structure for GraphView. Similarly, when a service is clicked in the graph,
DIVEApp reads it’s extended attributes from the system model, asks the DebugFactory

about available debuggers for that service and then creates a new PropertiesDialog to
show that information to the user. The mediator behaviour of DIVEApp is detailed in
figures 5.6, 5.8 and 5.10.

DWARFFilter

DWARFFilter is used by DIVEApp in order to decide if a given service should appear in
the graph. The only supported method is bool operator() which returns true if the
service should not be displayed. DWARFFilter does read it’s parameters directly from
DIVEConfiguration.

The current implementation can only filter unregistered and template services, but
future versions should be extended to allow filtering of services by their attributes.

PropertiesDialog

The PropertiesDialog class implements a Qt window which contains a list view and an
arbitrary number of buttons. It is created by DIVEApp when the user clicks on a service,
need or ability in the graph view. The ButtonClicked signal is emitted when one of the
buttons is clicked. In order to change the contents of the window, use the Update method.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 33

User :DIVEApp WorkerThread :DWARFSystemModel :GraphView :DotLayouter

MenuUpdate <<create>>
Update()

finishedEvent

GetFirstService()

LockService()

AddNode()

GetNextService()

[For all services]

* AddEdge()

Layout()
Init()

<<create>>

DoWork()

finishedEvent
UpdateGraph()

Figure 5.8: Realization of the “Update View” use case. Updating the DWARFSystemModel

was detailed in figure 5.2.

PreferencesDialog

The PreferencesDialog is a dialog with controls for all user preference settings. It is
displayed by DIVEApp when the user selects “Preferences...” from the menu.

DIVEConfiguration

DIVEConfiguration is derived from CConfiguration and contains members for all user
preference settings that need to be stored persistently. The values are loaded by main()

at program startup and saved at shutdown.

5.5 Auxiliary Classes

The auxiliary classes do not belong to a particular subsystem. The are used by various
subsystems for specific tasks. All of the classes are very general, so they can be reused in
other projects without change.

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 34

Auxilary

ValueBase

BoolValue StringValueIntValue

*
CConfiguration

IOFilterStream

QtPostThread

Figure 5.9: Overview of the auxiliary classes.

User :PropertiesDialog:DIVEApp :DebugFactory:GraphNodeWidget :GraphView :DWARFSystemModel

clicks
PortClicked()

NodePortClicked()
<<create>>

LockService()
FindDebuggers()

Update()ColorEdges()

Figure 5.10: Interactions of DIVE’s components when the “Select Service” use case is
perfomed.

QtPostThread

One major obstacle when implementing worker threads is that the programmer usually has
to provide a static function that again calls an object’s method or - if a thread abstraction
library is available - has to derive the thread from a particular “runnable” class, which
limits portability. QtPostThread simplifies this task. It is based on C++ templates and
can call any method with a void xxx() signature of any class. When the thread has
finished, an optional asynchronous Qt event can be sent to a given object.

QtPostThread is used by DIVEApp when updating the system model and by GraphView

for asynchronous graph layout. Figure 5.8 gives more details.

IOFilterStream

IOFilterStream runs another program and makes it’s stdin and stdout ports available to
the application. The normal C++ streaming operators (“<<” and “>>”) can be used to
write and read data to or from the program. IOFilterStream does this by implementing
it’s own streambuf class. A description of how to do this is found in [17].

CHAPTER 5. OBJECT DESIGN AND IMPLEMENTATION 35

CConfiguration

CConfiguration is a base class for user preference data that has to be stored persistently.
It’s main advantage is that all member variables are automatically saved and loaded, when
the Save and Load methods are invoked.

CConfiguration already provides three subclasses for popular data types: BoolValue,
IntValue and StringValue. Other types can be derived from ValueBase. The current
implementations use Qt’s QSettings class in order to save and load the values to a config-
uration file. For all types a default value can be specified which is used when no previously
saved value is available.

For an example of how to use CConfiguration, have a look at the implementation of
the DIVEConfiguration class.

Chapter 6

Future Extensions

At it’s current state, DIVE already is a valuable tool for development, debugging and
presentation of DWARF systems. But there still are a lot of possible extensions which -
hopefully - will be implemented in the future.

The purpose of this chapter is to propose future extensions of DIVE. To facilitate the
development, I also will give some hints about how these features could be integrated into
the current design.

6.1 Other Debuggers

In order to add new debuggers to DIVE, a new class has to be derived from
DebuggerCreator, which performs availability testing and creation of the debugger. An
instance of this class must be created in the constructor of DebugFactory. In case the new
debugger has it’s own windows, a Qt parent object is provided when CreateDebugger is
called.

To simplify connecting to a need or ability, the DebugService class can be used, which
creates a new service with the right predicates. Only the protocol-dependent interfaces
have to be implemented by the debugger.

Here are some ideas of future debuggers:

CORBA Method Invocations

Together with CORBA structured events, CORBA remote method invocation is one of the
two most frequently used communication forms in current DWARF applications. Therefore
a debugger for this protocol seems to be the next thing to do.

As a method invocation only goes to one receiver, monitoring the call is not directly
possible. A solution is to insert the debugger service as a proxy between the two services.
This probably will require support by the service manager, but then all calls can be in-
tercepted using the dynamic skeleton interface for receiving and the dynamic invocation
interface for sending of messages. This works even if the signature of the methods are

36

CHAPTER 6. FUTURE EXTENSIONS 37

unknown at compile time. Dynamic skeleton and invocation interfaces are described in
[14]. A completely different approach is using an orb with logging capabilities.

A different way of using CORBA method invocations at runtime is by sending them
to a service which exposes one or more interfaces. For this purpose, again the dynamic
invocation interface can be used. As the interface structure in general is not known at
compile time, a CORBA interface repository is needed. Unfortunately the OmniORB does
not provide one. A solution is to use the interface repository of one of the Java ORBs.
Alternatively, the DISTARB tool by Marcus Tönnis can be started as an external debugger
(see below).

External Debugger

Not all debuggers necessarily need to run inside the DIVE application. Especially for the
more complex ones (e.g. image stream viewers), running them in their own process seems
reasonable. Such a facility also allows easy integration of existing tools like DISTARB or
ManualTracker.

To implement this, some kind of configuration file is necessary. This can be an XML
file with a description of all external debuggers. The contents of this file should include
the path to the executable, the program arguments (with wildcards for service id and need
or ability name), the name of the button in the properties dialog and the preconditions
(protocol, attributes) that have to hold before the button is displayed. For each external
debugger found in the file, an object derived from DebuggerCreator must be added to the
DebugFactory.

Logging in Event Debugger

This describes not a new debugger, but rather an extension of the existing
PushSupplierDebugger. The current implementation only displays the most recently
received event, but for some event types also the history is important. Therefore the
PushSupplierDebugDialog should be extended with a QTabWidget that provides a sec-
ond page which has a text view where all events are logged. In order to convert an event
into a line of text it is not necessary to use the DynAny facility again - the event structure
easily can be read from the existing tree view.

6.2 Other Views

An obvious extension of DIVE is replacing the two-dimensional graph display with a differ-
ent interface. The Qt widget that occupies the largest area of the DIVE main window can
be replaced easily. Unfortunately those parts of DIVEApp‘s code which translate data from
DWARFSystemModel to GraphView need to be replaced as well. This opportunity should
also be used to move this code into it’s own class.

Some ideas for future views are:

CHAPTER 6. FUTURE EXTENSIONS 38

List View

This is a very simple view that presents a list of all services. Connections between the
services are not visible.

3D View

As DWARF is intended for augmented reality applications, a three-dimensional view of the
graph seems natural. Fortunately, Qt provides a OpenGL widget which can be used for
that purpose. In order to store the graph and to perform the layout, the GraphLayout and
GraphLayouter classes can be reused, but have to be slightly modified as they currently
rely on Qt Widgets to represent the nodes.

An alternative approach is to use the VRML output capabilities of Graphviz in a way
similar to the existing export function. The resulting file is then sent to an external VRML
viewer. The quality of Graphviz’s VRML output however has not yet been tested.

Edge Labels

This is an extension of the current 2D graph view. Graphviz is capable of placing a text
string next to each edge in the graph arrangement. This can be used in order to add e.g.
the protocol name to each connection. The implementation is relatively easy but there is
doubt if it is useful at all, because current DWARF system graphs already contain a lot of
connections and adding edge labels probably will contribute more confusion.

6.3 DWARF System Design with DIVE

The obvious approach to a graphical design of systems which consist of existing compo-
nents is the classic visual programming one. The designer can instantiate a component by
choosing one from a palette and placing it on the screen. Then the objects’ communication
ports are connected by drawing lines with the mouse. A good example for this approach
is the “Visual Network Editor” of AVS [7], a system used for processing and visualization
of scientific and business data.

Such a visual programming method however contradicts the self-assembling nature of
DWARF systems. In particular, their ability to choose the best communication partners
with respect to the context is reduced. Therefore, for DWARF a different approach has to
be found - but a complete discussion of this topic would exceed the scope of this document.

Manipulate Service Descriptions

Rather than specifying connections between services directly, an approach that seems to
fit better for DWARF systems is manipulating the attributes of existing services such that
the system assembled by the middleware has the desired properties.

The user interface of such a manipulation mechanism can be easily integrated into
DIVE as a debugger (see section 6.1). This makes the manipulator available as a button in

CHAPTER 6. FUTURE EXTENSIONS 39

the properties dialog. If the manipulator needs access to the service manager’s interfaces,
the DWARFSystemModel should be extended to provide this.

A service that is being modified is in an unfinished intermediate state and usually
should not be connected by the service manager until it is explicitly released. Such a
service, however, should be displayed in the graph view. One interesting question is where
the information about this service resides. In theory, the service description can be placed in
the service manager with an additional attribute that keeps the middleware from connecting
it. When the view is updated, the service description is read by the DWARF System Model

subsystem and displayed in the graph view. Alternatively, unfinished service descriptions
can be stored inside DIVE in the DWARF System Model. When editing is finished they
need to be transferred into the service manager.

The current middleware already supports template service descriptions and start-on-
demand services. Using these mechanisms to create new services should be considered.

Remote Service Configuration

Many existing DWARF services have some kind of internal parameters (e.g. speed of a
sheep) that can be changed by the user. This is done either by specifying the parameters
at the command line or - if modification at runtime is necessary - by developing a custom
user interface, which requires a lot of extra work. Both approaches only allow parameter
modification from the console where the service was originally started.

Service configuration can be simplified by supplying the service with a simple interface
which allows others to find out at runtime what parameters are supported and what their
current value is. Of course, changing these parameters is also possible.

Such an interface can be used to create another debugger for DIVE which reads the
current parameters, opens a window with a control for each of them and allows the user
to change the values. This permits easy reconfiguration of services at runtime.

Saving the DWARF Application

Both features described above - manipulation of service descriptions and remote service
configuration - together allow a developer to build new applications using existing DWARF
services. What still is missing is a way to store the changes persistently and reload the
whole application later. Details of how this can be done is the subject of further research
by the DWARF team.

Manual Layout

A feature that can be important for many kinds of system design is a layout engine which
lets the user place services manually. Ideally such a layouter would be capable of keeping
manually arranged services in place while the position of the others is determined au-
tomatically. The neato layouter seems to support pinning nodes to fixed positions, but
unfortunately ports do not work yet (cf. chapter 3).

CHAPTER 6. FUTURE EXTENSIONS 40

The first step towards an implementation necessarily is the addition of incremental
updates (see section 6.4), as the current situation is not acceptable, where the complete
layout is discarded at each update.

The other modifications should only affect the Graph Visualization and Layout sub-
system. GraphNodeWidget must be extended with a drag-and-drop ability and a layouter
has to be implemented which does not change the position of the manually placed nodes.

6.4 Dynamic and Incremental Updates

Currently, when an update is performed, the whole content of the DWARF System Model

subsystem and the GraphView is discarded and rebuilt. This is somewhat unsatisfying
because there are a number of disadvantages:

• DIVE does not know if the system has changed at all and repaints the graph often.
This results in increased system resource usage and visible flickering.

• If an incremental layouter (cf. chapter 3) was available, it could not be used because
the graph is drawn from scratch, without knowing the previous positions.

• The current experience shows that sometimes communication between DIVE and
distant service managers can be very slow. Therefore the updating process can only
be repeated in large intervals, which negatively affects the response time to system
changes.

The solution is to update only those parts of the graph that have changed. Ideally
this is done with the help from the service managers. Whenever the state of a service has
changed, they could notify DIVE, which only then would update the display. This could
also dramatically improve response time.

But even without help from the service manager, it is possible to limit screen flickering
and invocation of the layouter. After doing an update, the DWARFSystemModel compares
the new system state with the previous one. If they are equal, no redrawing is neces-
sary. Also the update could be performed in multiple threads, so slow service manager
connections will no longer affect the overall response time.

For the implementation of incremental updates, GraphView has to be extended to allow
modifications of the graph without completely discarding the previous state. The necessary
functions must allow modification of nodes (change ports) and removal of nodes and edges.
Also, DWARFSystemModel needs to get an interface to communicate service changes. This
could be done by some kind of callback mechanism, based on Qt signals, or by polling in
short intervals. To describe the system changes, a list with the ids of the changed services
should provide a reasonable level of granularity.

Chapter 7

Conclusion

The previous chapters have given an overview of the functionality and the internal structure
of the DWARF Interactive Visualization Environment.

The focus of Chapter 2 were the requirements for a visualization tool for DWARF
systems. The functionality of DIVE was described from the a user’s perspective. This
description included use cases and screen shots. Chapter 3 gave an overview of graph
layout in general, described various existing tools and showed why finally Graphviz was
selected for the first version of DIVE. Chapter 4 described the system design. We saw how
DIVE is devided into four subsystem and how the main design goals - extensibility and
reusability - are achieved. The actual implementation was described in chapter 5. It gave
an overview over each class and showed how DIVE handles some interesting technical tasks.
Chapter 6 focused on the future of DIVE. Despite of it’s current usefulness, there still are
many extensions which could make DIVE even more valuable. A number of additional
features were proposed. The chapter also explained how these features can be integrated
into the current design.

The current version of DIVE works reasonably stable and has proven to be a valuable
tool for the demonstration and development of DWARF systems. It was used in order
to publicly demonstrate the system design of the SHEEP system [16] and to explain the
functions of the DWARF middleware at the ISMAR2002 conference and at various other
occasions. DIVE is also actively used in the development process of current DWARF
applications, such as ARCHIE [19].

More research has to be conducted on what tools and processes are necessary in order
to allow an easy development of new DWARF applications out of existing services. One
interesting question is how such an application can be stored permanently in order to
launch it at a later time. As we have seen in chapter 6, DIVE can be extended to partly
achieve these goals, making it an even more useful tool in the development process of
DWARF applications.

41

Bibliography

[1] Dwarf Project Homepage. Technische Universität München,
http://www.augmentedreality.de.

[2] aiSee Product Page. AbsInt, http://www.absint.com/aisee/.

[3] AGD Homepage. TU Wien, Uni Köln, MPI,
http://www.ads.tuwien.ac.at/AGD/index.html.

[4] LEDA Product Page. Algorithmic Solutions,
http://www.algorithmic-solutions.com/enleda.htm.

[5] Graphviz Homepage. AT&T,
http://www.research.att.com/sw/tools/graphviz/.

[6] VGJ Homepage. Auburn University, http://www.eng.auburn.edu/department/
cse/research/graph_drawing/graph_drawing.html.

[7] Avs Web Site. http://www.avs.com/.

[8] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riss, C. Sandor, and M. Wagner, Design of a Component–Based Augmented
Reality Framework, in Proceedings of the International Symposium on Augmented
Reality – ISAR 2001, New York, USA, 2001.

[9] daVinci Presenter Homepage. b-novative, http://www.davinci-presenter.de/.

[10] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering:
Conquering Complex and Changing Systems, Prentice Hall, Upper Saddle River, NJ,
2000.

[11] Graph Editing Framework Homepage. http://gef.tigris.org.

[12] JViews Product Page. ILOG, http://www.ilog.com/products/jviews/.

[13] A. MacWilliams, DWARF – Using Ad-Hoc Services for Mobile Augmented Reality
Systems, Master’s thesis, Technische Universität München, Department of Computer
Science, Feb. 2000.

42

http://www.augmentedreality.de
http://www.absint.com/aisee/
http://www.ads.tuwien.ac.at/AGD/index.html
http://www.algorithmic-solutions.com/enleda.htm
http://www.research.att.com/sw/tools/graphviz/
http://www.eng.auburn.edu/department/cse/research/graph_drawing/graph_drawing.html
http://www.eng.auburn.edu/department/cse/research/graph_drawing/graph_drawing.html
http://www.avs.com/
http://www.davinci-presenter.de/
http://gef.tigris.org
http://www.ilog.com/products/jviews/

BIBLIOGRAPHY 43

[14] Object Management Group, The Common Object Request Broker: Architecture
and Specification.
http://www.omg.org/technology/documents/vault.htm#CORBA_IIOP, July 1999.
CORBA 2.3 Specification.

[15] Object Management Group, Corba Notification Specification.
http://www.omg.org/technology/documents/vault.htm#svc_and_fac, June
2000.

[16] C. Sandor, A. MacWilliams, M. Wagner, M. Bauer, and G. Klinker,
SHEEP: The Shared Environment Entertainment Pasture, in Demonstration at the
IEEE and ACM International Symposium on Mixed and Augmented Reality –
ISMAR 2002, Darmstadt, Germany, 2002.

[17] B. Stroustrup, Die C++-Programmiersprache, Addison-Wesley-Longman, Bonn,
3rd ed., 1998.

[18] Graph Layout Toolkit Product Page. Tom Sawyer Software,
http://www.tomsawyer.com/glt/index.html.

[19] Archie Project Homepage. Technische Universität München, http://wwwbruegge.
in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectArchie.

[20] Graphlet Homepage. Universität Passau,
http://www.infosun.fmi.uni-passau.de/Graphlet/.

[21] GDToolkit Homepage. Università di Roma Tre,
http://www.dia.uniroma3.it/~gdt/editablePages/main_index.htm.

[22] VCG Homepage. Universität des Saarlandes, Saarbrücken,
http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html.

http://www.omg.org/technology/documents/vault.htm#CORBA_IIOP
http://www.omg.org/technology/documents/vault.htm#svc_and_fac
http://www.tomsawyer.com/glt/index.html
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectArchie
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectArchie
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.dia.uniroma3.it/~gdt/editablePages/main_index.htm
http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html

	Introduction
	DWARF Overview
	Problem Statement

	Requirements Analysis
	Functional Requirements
	Nonfunctional Requirements
	Pseudo Requirements
	Use Case Models
	Actors
	Use Cases

	Object Model
	User Interface

	Existing Tools
	Overview of Graph Visualization and Layout
	Existing Graph Visualization and Layout Tools
	Rationale

	System Design
	Design Goals
	Subsystem Decomposition
	Persistent Data Management
	Global Software Control
	Third-Party Software

	Object Design and Implementation
	DWARF System Model
	Graph Visualization and Layout
	Debugging
	Application
	Auxiliary Classes

	Future Extensions
	Other Debuggers
	Other Views
	DWARF System Design with DIVE
	Dynamic and Incremental Updates

	Conclusion
	Bibliography

