
Technische Universität München

Fakultät für Informatik
c c c cccc ccc ccc ccc

c c cc

Systementwicklungsprojekt

Filter Framework for DWARF

Distributed Wearable Augmented Reality Framework

Michael Schlegel

Technische Universität München

Fakultät für Informatik
c c c cccc ccc ccc ccc

c c cc

Systementwicklungs Projekt

Filter Framework for DWARF

Distributed Wearable Augmented Reality Framework

Michael Schlegel

Aufgabenstellerin: Prof. Gudrun Klinker, Ph.D.

Betreuer: Dipl.-Inf. Marcus Tönnis

Abgabedatum: 5. September 2005

Ich versichere, daß ich diese Systementwicklungs Projekt selbständig verfaßt und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 5. September 2005 Michael Schlegel

Zusammenfassung

Erweiterte Realität ist eine Technologie, die versucht eine virtuelle Realität und die Realität
miteinander zu kombinieren. So können Informationen aus einem Rechensystem mit realen
Objekten assoziiert werden.

Bei der Umsetzung solcher Systeme, treten bestimmte geometrische Transformationen
gehäuft auf. Rotationen und Translationen sind Beispiele für solche Transformationen. Meist
durchlaufen die Daten dabei ein ganze Kette von einfachen verständlichen Transformatio-
nen.

Die Idee ist nun solche Transformationen in Filter zusammenzufassen. Und die Filter zu
Netzwerken zusammenzuschalten.

In diesem Systementwicklungs Projekt wird versucht ein möglichst offenes, wiederver-
wendbares Framework für solche Filternetzwerke zu erstellen.

Abstract

Augmented Realıty is a technology that tries to combine virtual reality and reality.

This requires a lot of geometric calculations. Such as rotation, translation and others. In
most cases the data has to pass through a lot of calculations. The idea is to pool such trans-
formations to filters and to combine those filters to a network of filters.

In this “Systementwicklungs Projekt” I try to develop a open and reusable framework for
such filternetworks.

Contents

1 Introduction 1
1.1 Augmented Reality . 1
1.2 DWARF . 1
1.3 Motivation . 1
1.4 Goals . 2

2 Requirements for the Design of Performant Networks 3
2.1 Communication . 3
2.2 Networking . 4
2.3 Performance . 4

2.3.1 Processes and Threads . 4
2.3.2 Java Reflection . 5

3 Implementation 6
3.1 Classes . 7

3.1.1 PluginLauncher . 7
3.1.2 PluginService . 8
3.1.3 PluginFactory . 8
3.1.4 Plugin . 9
3.1.5 ContextSwitch . 9

3.2 Testing . 9

4 Filters and Networks 11
4.1 Filters . 11

4.1.1 Geometric Filters . 11
4.1.1.1 Rotation . 11
4.1.1.2 Translation . 12
4.1.1.3 RangeFilter . 13
4.1.1.4 Distance . 14

4.1.2 Statistic Filters . 14
4.1.2.1 SpeedFilter . 14
4.1.2.2 ThresholdFilter . 15
4.1.2.3 Confidence . 15
4.1.2.4 WeightedAverage . 16

4.2 Example . 17

i

Contents

5 Howto 18
5.1 Write a Plugin . 18

5.1.1 Plugin Class . 18
5.1.1.1 Input . 18
5.1.1.2 Output . 19
5.1.1.3 AttributesHaveChanged . 19
5.1.1.4 ContextSwitch . 19

5.1.2 Service Description . 20
5.2 Use Plugins . 20

5.2.1 Start Plugins . 20
5.2.2 Configure Services . 21

5.3 Test Plugins . 21
5.3.1 Write a Test Case . 21

6 Conclusion 23
6.1 Performance . 23

6.1.1 Event online time . 23
6.1.1.1 Test of Multithreaded Services 23
6.1.1.2 Test at different frequencies 26

6.1.2 Java Reflection . 28
6.2 Discussion . 28

6.2.1 One Service – One Plugin . 28
6.2.2 General . 29
6.2.3 Usability . 29

6.3 Lessons learned . 29
6.4 Future work . 29

6.4.1 Inprocess autostart . 29
6.4.2 Huge networks . 30
6.4.3 Method Calls . 30
6.4.4 Graphical User Interface . 30
6.4.5 Velocity Datatype . 30

Bibliography 32

ii

List of Figures

2.1 Context switches . 5

3.1 PluginService . 10

4.1 Rotation Service . 11
4.2 Translation Service . 12
4.3 RangeFilter Service . 13
4.4 Distance Service . 14
4.5 Speed Service . 14
4.6 Threshold Service . 15
4.7 Confidence Service . 16
4.8 WeightedAverage Service . 17
4.9 Usage of two plugins in a complex network . 17

6.1 Ping and Pong Service . 23
6.2 One process without DIVE . 24
6.3 One process with DIVE . 25
6.4 Two Processes without DIVE . 25
6.5 Two Processes with DIVE . 26
6.6 Average Ping Times at different frequencies . 27
6.7 Standard Deviation at different frequencies . 27

iii

Listings

3.1 An example for a plugin description . 6
3.2 An example for a PluginLauncher.xml . 7
3.3 An example for attributes describing a plugin 8
4.1 An example for attributes of the rotationfilter service 11
4.2 An example for a translation filter service description 12
4.3 Example attributes for RangeFilter . 13
4.4 Possible ThresholdFilter attributes . 15
4.5 Possible ConfidenceFilter attributes . 15
4.6 Possible WeightedAverageFilter attributes . 16
5.1 Need Description . 18
5.2 Java code for a need . 19
5.3 Ability Description . 19
5.4 Java code for sending events . 19
5.5 Startup Command . 20
5.6 PluginClass Attribute default location . 20
5.7 PluginClass Attribute special location . 20
5.8 junit setUp code . 22
5.9 junit test method . 22
6.1 Example for logging with Log4j . 26
6.2 Definition of the VelocityData datatype . 30

iv

1 Introduction

In this chapter I give an basic overview of the DWARF project, the basic ideas of Augmented
Realıty and what this project is about.

1.1 Augmented Reality

Augmented Realıty is a technique to combine the real world with computer generated data.
This approach allows you to present information in a very convenient way. The user has a
very natural interface to data from a computer model, because the information is right there,
where the user expects it.

Example: In current cars the navigation system provides two ways of informing the driver
about the route. On way is audio via voice, the other is a small display in or above the center
console. With Augmented Realıty you can glue the arrow on the road, so the driver can
concentrate on the really important thing, driving on the road.

1.2 DWARF

The DWARF [3] is an acronym for “Distributed Wearable Augmented Reality Framework”.
It is intended to allow the development of distributed AR applications by reusing config-
urable components. The distributed approach of DWARF allows to build AR applications
by using more than one machine. With the chosen middleware CORBA it is even possible
to use a heterogeneous infrastructure, due CORBA is not limited to a specific programming
language or specific machine architecture.

DWARF consists of interdependent services, which expose their requirements, called
Needs, and offers, called Abilities, with the help of service managers.[10]

1.3 Motivation

Augmented Realıty is a technology which deals with a lot of spatial calculations. There are
coordinate transformations to be done, scaling of objects, translations of object to other places
in space. Other non geometric calculations are for example the speed of an object, or the
barycenter of two or more points. There are various kinds of such calculations.

These calculations are often concatenated. An example for this is a translation after a co-
ordinate transformation. These chains of calculations happen quite often.

1

1 Introduction

At the moment each application and service in DWARF implements its own algorithms.
This is unnecessary and error-prone. It is better to have a well tested basic set of calculations.
So it is obvious to make these calculations more general and find a way to connect these
calculations to a network.

By implementing these calculations into several DWARF services we meet the distributed
approach of the DWARF framework. The services can be distributed on many workstations
and so even a small wearable device can handle big applications. Another advantage of
implementing these algorithms into services is, that they don’t have to be implemented in
an other programming language.

This was not done in the past, because the was no common way to implement an algorithm
in a service. The developer had to implement a DWARF service from scratch, which can be
annoying.

1.4 Goals

The purpose of this project is to design and implement a framework, so new calculations
can be easily implemented and reused by other projects. To reach this goal a plugin based
architecture is chosen.

The second part of this project is the concrete implementation of a set of common filter
plugin services, such as rotation, translation, speed calculation and other general basic func-
tionality. The concept of designing filter as services was introduced to DWARF with the CAR
project. [16] [12] [6]

As a spin-off this project discusses also how CORBA events can be handled in the DWARF
environment, without lots of performance losses. CORBA events are needed for the informa-
tion flow of the services

2

2 Requirements for the Design of
Performant Networks

By the base decision of plugging the functionality into services by a PluginFramework , I
explain in this chapter, what the plugin framework should be able to do. I discuss which fea-
tures are worth to implement and which are not. Because performance is also an important
issue, I will discuss how performance can be improved.

The PluginFramework should satisfy the following criteria:

generic The framework has to support all data types of the control flow, even types that
will be built in. It should not be necessary to write a handler for a DWARF event type.

easy to use Developers shall not have to deal with large overhead in reading manuals, so
that the functionality provided by this project has a higher acceptance rate for setting
up applications. For easy setup of a new service an easy mapping between the service’s
description and the plugins functionality has to be found.

fast Plugins implemented with this framework, should be as fast as native java services.

2.1 Communication

Of course the plugins have to communicate with each other and with other services within
the DWARF environment. The DWARF framework knows three different ways of distribut-
ing data. Either by direct method calls – object references – , by events or by shared memory.

Because the original intention of this plugin framework was to act as filter for continuous
data like position data from a tracker subsystem, this work focuses on event typed commu-
nication. But there are more reasons to focus on events.

Interoperability Most services and applications in DWARF using events for information
exchange. For example the ObjectCalibration service use events for sending the position of
objects. It consumes the positions of the tracked marker and adds a static offset to the origin
of the associated real object.

This event typed communication makes it easy to place a pluginservice between the
objectcalibration and the existing application, without changing their interfaces. The only
things, that have to be changed are the service descriptions.

3

2 Requirements for the Design of Performant Networks

Recording Events can easily be recorded and played back by other services. So a plugin-
service can be debugged without having a complete tracking hardware at your fingertips.

Of course you could also record direct function calls, by introducing a proxy service. But
the service for recording events exists already.

Asynchronous Using method invocation provides only communication in a synchronous
manner. So a service must wait until the partner is finished processing.

By using the CORBA notification service, we get a asynchronous exchange of information.

The point-to-point communication architecture is another drawback of the method invo-
cation, because a invocation is targeted for a specific partner. But in a Augmented Realı-
ty system more than one service wants to be aware of a objects position in space.

2.2 Networking

In most cases we don’t want to use only one plugin, so we need techniques to connect them
to a network. So basic plugin, such as rotation or translation plugins, can be combined to a
more complex and powerful filter network.

The basic idea is just to reuse the DWARF middleware networking concept represented
by the service manager. By packing filters in individual services we can define needs and
abilities. And these need and abilities can be connected by the service manager.[10]

By adding attributes and predicates to the needs and abilities, we can construct a network
of plugins.

Another reason to use more than one service is visualization. You can actually view service
networks or subsets of them in the DIVE [13] application and see whether the connections
are correct or not.

2.3 Performance

According to Azuma’s definition [1] an Augmented Realıty system should interact in real
time with the user. So the PluginFramework has to comply with some requirements of per-
formance.

2.3.1 Processes and Threads

In the DWARF environment each service runs in its own process. So sending data between
two services costs at least one full context switch, which is expensive. See fig 2.1.

But using threads instead of processes does not solve this problem. To explain this, a closer
view to the CORBA notification service is needed.

When using a asynchronous event driven communication model, a CORBA service called
“notification service” is used.

4

2 Requirements for the Design of Performant Networks

Figure 2.1: Context switches

2.3.2 Java Reflection

Due reasons of generality, this project will heavily use Java’s reflection package. This could
be a performance issue.

In the initialization of the plugins the pluginservice tries to access information about the
plugin. This is done by Java’s reflection capabilities. Indeed, this costs a lot of CPU power
but is has to be done only once and only at startup.

Because the information the plugin service has about the plugins is collected via reflection,
method invocations on the plugins have also to be done with reflection. The costs of these
runtime reflection calls have to be estimated, therefore I will explicitly discuss performance
issues on this topic in chapter 6.1.2.

5

3 Implementation

In this chapter I explain how the PluginFramework has been implemented. I describe the
interfaces and the classes in detail and how they work together.

The implementation splits up into three parts.

PluginService The biggest and most important one is the PluginService. This service runs
the communication with the servicemanager, sets up the need receiver and ability sender.
For each plugin, exactly one PluginService is needed.

The PluginFramework differentiates between the plugin service and the plugins. A plugin
is a concrete implantation of an algorithm. The PluginService manages the connection to
the DWARF middleware. So the PluginService is needed to run the plugins, ant it is not
appearing as the PluginService in DWARF but as a service of the plugin.

Each PluginService can only manage one plugin at once. If more than one plugin is
needed, more than one PluginService has to be started.

LoadService The LoadService class is introduced due performance issues. It allows you to
run several PluginServices in one process, so no expensive context switching has to be done.
This becomes an issue, if you want to build a network of small generic plugins, and events
have go through many plugins.2.1.

PluginLauncher The PluginLauncher is a helper service, which allows you to start java
services via the LoadService class. The PluginLauncher provides a convenient way to start
more than one plugin in the same process. This increases performance, because lesser context
switches are needed.

The communication between the plugins has been realized with events. I choose this way,
because it is the common way in the DWARF framework for continuous data streams, as
for instance Poses are. An other advantage is that the user does not has to care where the
plugins are located. They can be in the same process space or on another machine. And the
flow of events can be easily debugged with DIVE .

The plugins are described by dwarf service descriptions. Figure 3.1 gives an example for
such a description. As you can see, there is one service attribute which indicates which plu-
gin should be used.

<service name= "scaleSheep" startOnDemand= "true"

6

3 Implementation

stopOnNoUse= "false" isTemplate= "false" >

<attribute name= "PluginClass" value= "ScaleFilter" />

<ability type= "PoseData" name="Scaled" >
<attribute name= "Factor" value= "0.5" />

<connector protocol= "PushSupplier" />
</ability>

<need name="Position" type= "PoseData" minInstances= "1" maxInstances= "1"
>

<connector protocol= "PushConsumer" />
</need>

</service>

Listing 3.1: An example for a plugin description

3.1 Classes

The complete static class model of the PluginFramework can be seen in figure 3.1. I describe
the classes in the order the are instantiated while a new plugin is started.

The PluginService has to know about the service it should start. The name of that service
must be unique and is given by an option in the commandline.

3.1.1 PluginLauncher

Among many others, plugins should have two features. They should run in the same pro-
cess, and they should start on demand.

But how can the servicemanager start a service in a specific process? The solution is the
SvcLoadPOA interface. A class implementing this interface can be registered at the service-
manager as a callback for a service. When the servicemanager wants to start this service, this
job is delegated to the callback object.

The purpose of the PluginLauncher is to register the callback object of all plugins to be
started in the same process space at the servicemanager.

The PluginLauncher service itself has in normal case no needs and abilities. It is just in-
troduced to explain the functionality or to start plugins for older applications. It can also be
integrated in other services by use of the ServiceLoad class.

In sample service description 3.2 you can see how to tell the PluginLaucher which services
should be started in the same process. In this case the service “ping” and “pong” are started
by the PluginLauncher on demand of the servicemanager.

<service name= "PluginLauncher" startOnDemand= "true" stopOnNoUse= "false"
isTemplate= "false" startCommand= "PluginLauncher.jar"

startAutomatically= "false" >

7

3 Implementation

<attribute name= "Start" value= "ping,pong" />

</service>

Listing 3.2: An example for a PluginLauncher.xml

3.1.2 PluginService

For each plugin defined in the PluginLauncher service, a new PluginService object will be
created. This PluginServices are DWARF services that need their own servicedescriptions
with needs and abilities.

<attribute name= "PluginClass" value= "TranslateFilter" />

<ability type= "PoseData" name="Translated" >
<connector protocol= "PushSupplier" />

</ability>

<need name="Position" type= "PoseData" minInstances= "1"
maxInstances= "1" >
<connector protocol= "PushConsumer" />
</need>

Listing 3.3: An example for attributes describing a plugin

The PluginClass attribute defines which plugin class will be loaded. The PluginClass
can be either a absolute path name or relative to de.tum.in.dwarf.PluginService.-
plugins .

In the example 3.3 the plugin should have the name “TranslateFilter.class” and should be
located in package de.tum.in.dwarf.PluginService.plugins .

3.1.3 PluginFactory

The PluginFactory[5] actually sets up the plugin, it is called for each need and ability found
by the PluginService. It is implementing the singleton pattern [5] so there is only one Plug-
inFactory, even more than one plugin is started in the same process.

It holds information about which plugins have already been instantiated and which needs
and abilities. If necessary, the factory creates a new instance. The need or ability registra-
tion request from the PluginService is delegated to the plugin. The plugin then returns the
corresponding handler to the factory and the factory gives it back to the PluginService.

8

3 Implementation

3.1.4 Plugin

The Plugin class is an abstract template class. All plugins must inherit from this class because
the management for the plugins is done here. The plugin class has all informations about the
event sender, the event receiver and of course about the plugin.

A plugin get its information by implementing need callbacks methods starting with
setNeedData . The Plugin class is looking via the java reflection API for methods start-
ing with a constant prefix “setNeedData ”. The plugin class creates instances of receiver
and sender handler, so this work is hided from the plugin user.

The plugin class implements the AttributesChangedPOA interface and calls the
attributesHaveChanged(Attributes attributes) method, if attributes are chang-
ing. By overwriting this method, the developer of a plugin gets informed about the changing
attributes.

3.1.5 ContextSwitch

To provide the ContextSwitch [17] ability the C++ DefaultContextSwitch.cpp class has
been ported to Java. The PluginFramework is creating a new DefaultContextSwitch ob-
ject for each ContextSwitch need found in the service description.

3.2 Testing

Testing software is a fundamental issue in software engineering. But testing services in the
DWARF environment can be a painful job. You have to start the service manager and the
corresponding services. Perhaps you must write new test services to test your service.

In the java environment the junit framework [7] has become a very common tool for
testing software[2]. So a interface for testing with the junit framework is built-in in the plugin
framework.

To avoid the complex CORBA and DWARF middleware a new class named Mock-
EventSender 3.1 had to be introduced [9][4]. This class implements the same interface as
the RealEventSender but it stores the events in a local FIFO queue. So the test suit is able
to gather that events with a special getter method. With this class it is possible to test a
plugin without starting the whole DWARF middleware. Within the test suite you can send
and receive events to and from the plugin. You can also change the attributes. So the whole
functionality can be tested easily.

The testing feature has be switched on with the switchOnTesting() method of the
plugin superclass. Changing the object, which should be tested, is not the common way, but
an other solution would become to complex. A JUnit test not touching the base classes would
require a of the PluginService class and

9

3 Implementation

Figure 3.1: PluginService

10

4 Filters and Networks

In this chapter I introduce a few basic filter services. I divide them into two sections. The
geometric filters are about basic geometric transformations. The statistic filters calculates
statistical values. Some of these filters are base on a work of Gerhard Reithmayr. [15]

4.1 Filters

Here are implementations of filters using the PluginFramework .

4.1.1 Geometric Filters

4.1.1.1 Rotation

The rotation filter plugin rotates the Position PoseData around a given quaternion. This
quaternion can either be given with attributes QX, QX, QZ, QWor by the orientation part of
Quaternion PoseData need.

If using the attributes for configuration, you have to define all of them. Otherwise the
correct quaternion is used.

Figure 4.1: Rotation Service

After rotation, a point p = (0, x, y,)T is then given by p′ = qpq−1.[14]

<attribute name= "PluginClass" value= "RotationFilter" />
<attribute name= "QX" value= "0.0" />
<attribute name= "QY" value= "1.0" />

11

4 Filters and Networks

<attribute name= "QZ" value= "0.0" />
<attribute name= "QW" value= "0.0" />

Listing 4.1: An example for attributes of the rotationfilter service

4.1.1.2 Translation

The Translationfilter gets PoseData (x) and translates this position with the given translation
vector(t). So we have the following map f : R3 → R3 with f : x 7→ x + t

The service can be configured by the service description. The following attributes are pos-
sible TranslationX , TranslationY , TranslationZ . These attributes are ignored unless
all three have been set to a correct float value. The other way to configure the service is us-
ing event. By sending a PoseData to the service position of this event is used for the new
translation vector.

If no translation vector is defined the zero vector (0, 0, 0)t is assumed. The service just
forwards the incoming data.

Figure 4.2: Translation Service

<service name= "translation" startOnDemand= "true" stopOnNoUse= "false"
isTemplate= "false" >

<attribute name= "PluginClass" value= "TranslationFilter" />
<attribute name= "TranslationX" value= "0.5" />
<attribute name= "TranslationY" value= "1.2" />
<attribute name= "TranslationZ" value= "0.1" />

<ability type= "PoseData" name="Translated" >

<attribute name= "ID" value= "translating" />
<connector protocol= "PushSupplier" />

</ability>

<need name="Position" type= "PoseData" minInstances= "1"
maxInstances= "1" predicate= "(ID=translation)" >

<connector protocol= "PushConsumer" />
</need>

12

4 Filters and Networks

<need name="Translation" type= "PoseData" minInstances= "1"
maxInstances= "1" predicate= "(ID=translator)" >

<connector protocol= "PushConsumer" />
</need>

</service>

Listing 4.2: An example for a translation filter service description

4.1.1.3 RangeFilter

The RangeFilter is a high and low-band filter for incoming position data. It can restrict Pose-
Data to a certain space.

The service can be configured either with event or more detailed with attributes. In the
default state the service filters nothing.

To define a lower bound the attribute maxPosition has to be set to a comma separated
list of float values.

<attribute name= "minPosition" value= "1.0,-2.0,-" />
<attribute name= "maxPosition" value= "10.0,-,10.0" />

Listing 4.3: Example attributes for RangeFilter

In figure 4.3 the minPosition is set to 1.0,-2.0,- . So every PoseData with x coor-
dinate lower than 1.0 and y coordinate lower than −2.0 will not be forwarded. Any value
which is not a float value, like the dash - , switches the filtering for this coordinate off. So the
y values would not be examined. Setting the attribute to -,-,- would switch the filtering
off at all.

A lower bound can also be configured by sending a event to the MinPosition need. Once
the event arrived, the filtering is started and can not be switched off with events. Another
disadvantage using events, is that all coordinates are used.

Figure 4.3: RangeFilter Service

13

4 Filters and Networks

4.1.1.4 Distance

This service expects two PoseData. Every time a event is incoming, the distance of the last
is sent in an InputDataAnalogUnlimited event. The service has no special attributes for
configuration.

Figure 4.4: Distance Service

4.1.2 Statistic Filters

4.1.2.1 SpeedFilter

This service calculates the speed from the incoming PoseData s. Therefor it uses the fields
timestamp and position. Each time a new PoseData arrives, the service compares the in-
coming and the last event and sends the speed value as a InputDataAnalogUnlimited
event and the direction of the moving target as PoseData event. The direction is a 3-dim
vector containing the object’s movement between the last known positions. This is stored in
the position field of the PoseData datatype.

Figure 4.5: Speed Service

It would be nice to have a datatype holding all the necessary informations about velocity,
like direction and the speed value. But the discussion about the design of that datatype is
not yet finished, so I can only make a proposal for such a datatype in section 6.4.5.

14

4 Filters and Networks

4.1.2.2 ThresholdFilter

The ThresholdFilter evaluates changes of the actual and the last event. There can be a lower
and higher bound for angle and distance change.

The service can be configured with the following attributes: maxDistance , minDis-
tance , minAngle , maxAngle

The values of the attributes minAngle and maxAngle have to be given in radian (0 ≤
αmin, αmax ≤ 2π).

For example the attribute <attribute name= "minDistance" value= "5.0" /> only lets
PoseData events pass, which have a distance of more 5 units to the last known PoseData .

<attribute name= "minDistance" value= "" />
<attribute name= "maxDistance" value= "" />
<attribute name= "minAngle" value= "" />
<attribute name= "maxAngle" value= "" />

Listing 4.4: Possible ThresholdFilter attributes

Figure 4.6: Threshold Service

4.1.2.3 Confidence

The ConfidenceFilter Plugin filters incoming events based on their confidence value.

It works either in high or low pass mode and has a configurable threshold value. In high
pass mode it only passes events that have a confidence equal or greater than the threshold
value, and vice versa in low pass mode.

It has the following attributes. The Confidence attribute contains the threshold float
value from 0 to 1. The Mode attribute can be set to either high or low to denote the kind of
filter mode.

<attribute name= "Confidence" value= "" />
<attribute name= "Mode" value= "" />

Listing 4.5: Possible ConfidenceFilter attributes

15

4 Filters and Networks

Figure 4.7: Confidence Service

4.1.2.4 WeightedAverage

Often incoming position data has a high deviation, but you don’t want your object jump
around in space. This is a domain for the WeightedAverage Filter. It can average the position
as well as the orientation data. Therefor it consists of a FIFO queue ai for i ∈ {1, . . . , n} and a
few weights wi for i ∈ {1, . . . , n}. The incoming PoseData is stored in the FIFO, which size
is defined by the amount of weights. The position is calculated with the formula 4.1.

r =
1
n

n∑
i=1

wiai (4.1)

The average orientation is computed as the normalized weighted average of the orienta-
tions in the queue in log space. That is, they are transformed to 3D vectors inside the unit
hemisphere and averaged in this linear space. The resulting vector is transformed back to a
unit quaternion.

Note that the sum of the weights should be equal to 1, otherwise the data is scaled. Also it
makes no sense to set the weights to negative values. But perhaps somebody finds it useful,
so the service does not check these two conditions.

n∑
i=1

wi = 1 (4.2)

wi > 0 ∀i ∈ {1, . . . , n} (4.3)

The service can be configured with two attributes. The Type attributes can have the val-
ues all , position , orientation or none . When set to all the position as well as the
orientation is averaged. If set to position only the positions is averaged. Analog for the
orientation value. The value of the Weights attribute must be a comma separated list of
float values.

<attribute name= "Type" value= "all" />
<attribute name= "Weights" value= "0.2,0.3,0.5" />

Listing 4.6: Possible WeightedAverageFilter attributes

16

4 Filters and Networks

Figure 4.8: WeightedAverage Service

4.2 Example

The fig. 4.9 shows a network of DWARF services. The TOC and the BubbscherBalkenFilter
service were implemented using the PluginFramework .

Figure 4.9: Usage of two plugins in a complex network

17

5 Howto

This chapter gives an detailed description how to develop, test and use new plugins for this
plugin framework.

5.1 Write a Plugin

The first thing do to, is to decide where the new plugin should reside. The default loca-
tion is the package de.tum.in.dwarf.PluginService.plugins . If you decide for an
other location, you have to determine this in the plugin servicedescription with a full qual-
ified classname. A convention for depositing plugins should be used. Base spatial trans-
formations should reside in this package, while e.g. 3Dto2D transformation, which are of-
ten required for UI visualization could be placed in a package de.in.dwarf.Plugin-
Service.plugins.ui . This should enhance the reusability of plugins.

5.1.1 Plugin Class

This class contains the implementation of the algorithm and the communication. This class
has to be declared in the service description as seen in listing 5.6. Of course the implemen-
tation can be split up to several classes, but the communication methods must reside in the
class declared.

5.1.1.1 Input

For each need attribute of your service, you have to implement a public void method
starting with setNeedData followed by the need name. This method must have only one
argument of that type, which is defined in the need description. Listing 5.1 defines a need
for PoseData with the name Ping . The related Java code 5.2 implements a method named
setNeedDataPing with one argument of type PoseData .

<need type= "PoseData" name="Ping" minInstances= "1" maxInstances= "1" >
<connector protocol= "PushConsumer" />

</need>

Listing 5.1: Need Description

18

5 Howto

public void setNeedDataPing(PoseData pingPoseData){}

Listing 5.2: Java code for a need

5.1.1.2 Output

To send events out of plugins, you have to use the void sendData(String abilityName,

IDLEntity object) method of the plugin superclass. The value of the variable ability-
Name has to be the name of the ability defined in the ability description. The argument
named object has to contain the data, which should be sent out. It has to be of the type
IDLEntity which is the declared by every predefined CORBA struct.

In listing 5.4 you can see, how to send events for an ability defined in service description
5.3.

<ability type= "PoseData" name="Position" >
<connector protocol= "PushSupplier" />

</ability>

Listing 5.3: Ability Description

Pose pingPose = new Pose();
sendData("Ping" , pingPose.getIDLEntity());

Listing 5.4: Java code for sending events

You do not have to write your own handler, even not for event types defined by yourself.
This work is done by the dwarfs Java common package.

5.1.1.3 AttributesHaveChanged

If you want to be aware of changing attributes, you can overwrite the method public void

attributesHaveChanged(Attributes attributes) , whose implementation is empty.

The plugin superclass calls this methods each time the attributes of the service descrip-
tion are changing. Even at the initialization of the service this method is called. So this is a
convenient way to gather the attributes, set in the service description.

5.1.1.4 ContextSwitch

To use the ContextSwitch [17] facilities only a new need for ContextSwitch has to be defined
in the service description. The attributes needed to configure the ContextSwitch need are
described in [17].

19

5 Howto

5.1.2 Service Description

The service descriptions of plugins do not differ much to other service descriptions.

The start command has to be set to PluginService.jar -Dservicename= followed by
the servicename, as you can see in fig.5.5. Notice that the servicename in the startup attribute
has to be identical to the servcename attribute.

<service name= "howto2" startAutomatically= "false" startOnDemand= "true"
stopOnNoUse= "false" startCommand= "PluginService.jar -DserviceName=
howto2" >

Listing 5.5: Startup Command

Furthermore you have to specify which plugin class should be used for that service. This
is done with an service attribute named PluginClass . If the class is located in the default
plugin package de.tum.in.dwarf.PluginService.plugins you just have to give the
classname 5.6. But if your plugin is somewhere else you have to give the full qualified class-
name 5.7.

<attribute name= "PluginClass" value= "PingPlugin" />

Listing 5.6: PluginClass Attribute default location

<attribute name= "PluginClass" value= "my.special.place.PingPlugin" />

Listing 5.7: PluginClass Attribute special location

5.2 Use Plugins

The plugin is written, now we want to see in action.

5.2.1 Start Plugins

There two different ways to use plugins. One way is to start all plugins in the same process.
The other more simple way runs all plugins in different processes.

In more than one process Running plugin services in different processes is easy. Just
run java -jar PluginService -DserviceName=yourServiceName for each service. If you
have a proper service description, the service should start up in its own process.

20

5 Howto

In one process If you want to start more than one plugin service in one process, you have
to use the PluginLauncher service. In listing 3.2 you can see an example service description
for the PluginLauncher. The attribute <attribute name= "Start" value= "ping,pong" />

means that the plugin services with the servicename “ping” and “pong” should be started
by the PluginLauncher in the same process.

Notice that the PluginLauncher has to run before the Plugins are started, because the
PluginLauncher registers the special startup routine at the servicemanager. Otherwise the
servicemanager will start a Java virtualmachine for each plugin and the plugins run in dif-
ferent processes.

5.2.2 Configure Services

Services should be configurable, to reach a wider field of work.

Attributes Configuration can be done with attributes in the servicedescription. By editing
the servicedescription the service can be customized. These attributes can also be changed at
the runtime. If the plugin implements the attributesHaveChanged method, the plugin
respond to that change.

Events An other way for some configuration is to send the new configuration data
via events. This method requires of course an own need for each data type and a own
setNeedData method. But it has the advantage, that it can be configured by an other ser-
vice in a convenient way.

5.3 Test Plugins

Testing services in dwarf can be annoying, because you have to run a servicemanager, DIVE ,
your test environment and of course your test service. This a lot work and costs a lot of time.
A more convenient way to test java code is the junit framework. More information about
the junit framework and detailed documentation can be found on the project webpage[7].

5.3.1 Write a Test Case

To test plugins without starting dwarfs middleware, the MockEventSender , Mock-
AbilityDescription and the MockAttribute classes have been introduced.

The sendData method of the MockEventSender stores the outgoing events in a FIFO
queue. So the test case can get information about the sender. Therefor three methods have
been implemented.

get() returns the first object in the sender queue and removes it

isEmpty() returns true if no objects are in the queue

21

5 Howto

size() returns the size of the sender queue

As seen in listing 5.8, you have to switch the plugin into testing mode, which can be done
with the switchOnTesting() method. The registerAbility method of the plugin ob-
ject returns a MockEventSender.

Because no xml servicedescription is read, you have also to setup the abilitiyDescrip-
tion by yourself. Because we don’t want to use the middleware, you have to use the
MockAbilityDescription class. This can also be seen in listing 5.8.

RotationFilter m_plugin;
MockEventSender m_sender;
Pose m_pose = null ;

protected void setUp() throws Exception {
super .setUp();
m_plugin = new RotationFilter();
m_plugin.switchOnTesting();

MockAbilityDescription ability = new MockAbilityDescription("
Rotated" , "PoseData");

m_sender = (MockEventSender) m_plugin.registerAbility(ability,
null);

m_pose = new Pose(new double [] {1.0, 2.0, 30.0});
}

Listing 5.8: junit setUp code

In listing 5.9 a typical test routine is shown. Such code should reside in a junit TestCase
class which is in the same package as the plugin and should be named equally to the plugin,
but with “Test ” as prefix.

public void testNothingConfigured() throws WrongTypeException{

assertTrue(m_sender.isEmpty());
m_plugin.setNeedDataPosition((PoseData) m_pose.getIDLEntity());
assertTrue(m_sender.size() == 1);

PoseData result = (PoseData) m_sender.get();

assertTrue(m_pose.equals(new Pose(result)));
}

Listing 5.9: junit test method

22

6 Conclusion

In this chapter I discuss the results of this project. I present also some performance tests of
the framework and what features can be implemented in the future.

6.1 Performance

All performance tests in the following chapter have been done on a Celeron 2.94GHz Linux
Debian Sarge machine with OpenORB 1.3.0.

6.1.1 Event online time

The interactivity with an Augmented Realıty system should happen in real time [1]. So the
delay caused by data processing should be as small as possible. Because the data processing
is done here in several services, the communication between these services becomes an issue.

To measure the time the events are traveling from an ability to a need, the ping and the
pong services were written 6.1. The ping service writes the actual time in the event and
sends it to the pong service. Immediately after receiving the event the pong service takes the
system time and calculates the difference of the time stamps. This kind measurement work
only, if both services running on the same machine.

Figure 6.1: Ping and Pong Service

6.1.1.1 Test of Multithreaded Services

The results can be seen in Tab. 6.1. An interesting result is the significant lagging, if an other
service is present. When using one process the ping time is 1.25 times slower and when using
two processes even 1.42 times slower. Also the statistical spread increases dramatically. If

23

6 Conclusion

average median standard deviation
One process without DIVE 2.64 ms 2 ms 2.29 ms
Two process without DIVE 2.76 ms 2 ms 2.33 ms
One process with DIVE 3.30 ms 2 ms 6.71 ms
Two process with DIVE 3.92 ms 2 ms 9.66 ms

Table 6.1: Table of ping times

using multiple processes the spread rises by a factor of 4.1 and if using a single process it
rises by a factor of 2.9.

Single process without DIVE This test series measures the ping time, if both services run-
ning in the same process.

Figure 6.2: One process without DIVE

Single process with DIVE In this test both services are started in the same process. The
DIVE service is also started.

24

6 Conclusion

Figure 6.3: One process with DIVE

Two Processes without DIVE Now the ping and the pong services running in two separate
processes.

Figure 6.4: Two Processes without DIVE

Two Processes with DIVE The ping and the pong services running in different processes
and DIVE is started.

25

6 Conclusion

Figure 6.5: Two Processes with DIVE

6.1.1.2 Test at different frequencies

Because a data rate of two events per second is not very realistic in an Augmented Realı-
ty system, so tests with various data rates have been done. Because logging events on the
console seems to slow down services, two test series was done. One with logging and the
other without. The DWARF framework is using the Log4J framework [8] for the logging
facilities.

m_log.info("Received the pong #" + pingID + ". time: " + diff+ "ms.");}

Listing 6.1: Example for logging with Log4j

With Log4J Without Log4J
Average Std. Deviation Average Std. Deviation

2Hz 3.0175m 4.33027ms 3.08ms 4.4438ms
5Hz 3.025ms 4.37381ms 3.0725ms 4.62372ms
8Hz 3.0775ms 4.40781ms 3.265ms 4.21535ms

16Hz 3.085ms 2.96132ms 3.025ms 3.67608ms
31Hz 3.5925ms 5.77015ms 3.105ms 4.21526ms
63Hz 12.925ms 25.2517ms 3.2325ms 5.33419ms

125Hz 15.4325ms 25.9683ms 3.52ms 6.01719ms

Table 6.2: Table of ping times with various frequencies

26

6 Conclusion

As can seen in fig. 6.2 the average ping time is increasing dramatically (6.6), when using
logging with at hight frequencies. Also the standard deviation is raising (6.7), when logging
more than 31 messages per second.

But logging less than 31 messages per second does not affect the ping times at all.

Figure 6.6: Average Ping Times at different frequencies

Figure 6.7: Standard Deviation at different frequencies

27

6 Conclusion

6.1.2 Java Reflection

Because the pluginframework uses a lot of Java’s reflection capabilities, I did some per-
formance tests. The test code calls a method 1000000 times by direct invocation. The same
amount of calls were done with Java’s method invocation method of the reflection package.
The called method does nothing and returns immediately.

Time per call
Type of calling Java 1.4.2 05 Java 1.5.0 01
1 ∗ 106 direct calls 6ns 5ns
1 ∗ 106 reflection calls 125ns 124ns

Table 6.3: Table of invocation times

Table 6.3 shows, that method calls with reflection are about 21 times slower than direct
calls, regardless of which version of Java’s virtualmachine in is used.

Method calls with reflection at runtime are only used if a event is received and the plugin
superclass has to invoke the corresponding method in the plugin. So this happens not too
often. In normal cases this happens not too often. In normal case about 30 up to 100 events
per second coming in. So this small overhead cost only little CPU time and does not affect
the ping times of events.

6.2 Discussion

As I started this project, the task was to develop a filter framework, which helps developing
new filters for the DWARF framework. But during work the task changed towards a more
general approach – the PluginFramework .

6.2.1 One Service – One Plugin

The first idea was to implement more than one filter in a service. This has not been imple-
mented, because of at least three reasons.

1. Due we want connect more than one plugins to a network, we need to describe this net-
work. With the previous approach it would be possible to have more than one plugin
in a service. So it would be necessary to connect plugins within a service and plugins in
different services. Connecting plugins in different services can be described with ser-
vice descriptions as usual in DWARF [11]. But the description of connections between
the plugins in the same service, would require a new language or a reimplementation
of DWARF ’s builtin functionality.

By placing each plugin in a service of its own, the infrastructure of DWARF can be
reused.

2. The namespace. In DWARF need and ability names have to be unique. But using more
than one filter this could cause troubles, especially when using more than one plugin
of the same type.

28

6 Conclusion

3. Using more than one plugin in the same service the service description becomes big-
ger and more complex. And in the visualization of that services in DIVE you could
hardly differ between the several plugins. But splitting up into several services can
also become an issue (see 6.4.2), but this seems to be the less evil.

6.2.2 General

The approach not to focus mainly on filters allows to develop more general services with
this framework. Nearly each service which uses event communication can be implemented.
For example a event recorder and/or player for any type of event.

6.2.3 Usability

It is very convenient to set up and test a service with the PluginFramework . Only a few
lines of code are enough. Even a developer, which is not skilled in CORBA can implement a
DWARF service and can concentrate on things that really matter.

6.3 Lessons learned

I learned a lot during this work. First of all I learned a lot of Java programming. I got used
to write junit tests and got familiar with Java’s reflection capabilities.

An other big lesson learned was developing with the great Eclipse IDE. And of course I
learned much about CORBA, but I think I only see the tip of that huge iceberg.

6.4 Future work

Things can always be improved.

6.4.1 Inprocess autostart

Services in DWARF can be started on demand by the servicemanager. If the servicemanager
finds a service, which is implemented in java, it starts a new Java virtual machine for this
service. But as seen in figure 6.1 it is worth to start more than one service in the same pro-
cess. This can be done by using the LoadService class, which implements the SvcLoad
interface. The PluginLauncher service uses this class to register itself as a callback. So all ser-
vice registered by the PluginLauncher are started by the PluginLauncher and running in the
same process space.

This works fine, but it is a complex job to set it up. The best place to implement such
inprocess starting, would be the servicemanager. There could be a new attribute in the ser-
vice description e.g. inProcess=’’true’’ . Then all services tagged with the “inProcess”
attribute would be started in the same process by the servicemanager.

29

6 Conclusion

6.4.2 Huge networks

At the moment each plugin is a service of its own, so it can be visualized in DWARF . This
advantage can turnover if the networks grows. This is not a problem of the filter framework
but of DIVE , although the filter framework make the problem even bigger.

So it would be nice hiding the filter framework in DIVE or to replace it by a new symbol,
e.g. a triangle with all outgoing and incoming connections.

6.4.3 Method Calls

Communication with plugins can only be done with events. This is enough for dealing with
continuous data streams. To use the pluginframework beyond this purpose, it would be nice
if the plugin framework could handle ObjrefExporter and ObjrefImporter . So the
pluginservice could be used in a wider field of application.

6.4.4 Graphical User Interface

To create a network of pluginservices or of any other services, the description of the needs
and abilities have to be augmented with predicates and attributes, to assure the right abilities
are connected to the right needs. Some services can also be configured with attributes in the
service description. All of this configuration has to be done with an editor or other even
more sophisticated tools like eclipse XMLBuddy[18]. This can be error-prone.

It would be nice to have a GUI tool which allows to build and configure a network. This
would be a convenient way to build such networks and a save way to avoid typos and other
misconfiguration.

6.4.5 Velocity Datatype

The speed filter (4.1.2.1) uses two datatypes not in the intended way. The
InputDataAnalogUnlimited datatyp was designed to configure other services and
the PoseData was introduced to send positions of objects and not information direction.

So it would be nice to have a special datatype concerning velocity. Due the discussion
about the content of VelocityData is not yet finished, I make a proposal, which can be
seen in listing 6.2. This datatype can hold beside the plain velocity also the direction of the
target object. The other entries are the same as in the PoseData datatype.

So it would be nice to have a special datatype concerning velocity. Due the discussion
about the content of VelocityData is not yet finished, I make a proposal, which can be
seen in listing 6.2.

This datatype can hold beside the plain velocity also the direction of the target object.

struct VelocityData {
string source; // describing the source id
string target; // describing the target id
bool hasVelocity; // true if a velocity is set

30

6 Conclusion

bool hasDirection; // true if there is direction
double velocity; // velocity
double[3] direction; // direction of the moving object
Time timeStamp; // the time stamp of the event
double confidence; // the confidence level
double timeError; // error of the time

}

Listing 6.2: Definition of the VelocityData datatype

The direction vector d = (x, y, z)t should be normalized to the time of one second, so the
2-norm of that vector should be the same as the speed v.

∣∣∣∣∣∣
 x

y
z

∣∣∣∣∣∣ = v

E.g. a target object moved the last 0.5s from point a := (1, 2, 3)t to point b := (2, 3, 5)t. So
the target moved the in direction c := b − a = (1, 1, 2)t. And it is moving with the speed of
v = ‖c‖

t = 2m
0.5s = 4m

s . Because the direction vector of the datatype VelocityData should
have the length v, it has to be scaled to d := c

‖c‖v.

Of course it is a disadvantage to have redundant data, speed and the direction norm. But
so the user can decide either to use only the speed or to use only the direction.

The other entries in the VelocityData type, like timeStamp or confidence, have analog
meanings as in the PoseData datatype.

31

Bibliography

[1] R. AZUMA, A Survey of Augmented Reality, in Teleoperators and Virtual Environments,
Vol. 6, Issue 4, 1997, pp. 335–385.

[2] K. BECK and E. GAMMA, Test Infected – Programmers Love Writing Tests.
http://members.pingnet.ch/gamma/junit.htm .

[3] DWARF Homepage. http://wwwbruegge.in.tum.de/DWARF/WebHome .

[4] P. FRÖHLICH and J. LINK, Kaffeeprobe JUnit - Entwickeln und Testen in Java, iX, 3 (2001),
p. 108.

[5] E. GAMMA, R. HELM, R. JOHNSON, and J. VLISSIDES, Design Patterns. Elements of
Reusable Object-Oriented Software, Addison Wesley, 2004.

[6] M. GEIPEL, Run-time Development and Configuration of Dynamic Service Networks.
http://wwwbruegge.in.tum.de/pub/DWARF/SepGeipel/SEP.pdf , June 2004.

[7] JUnit Homepage. http://www.junit.org .

[8] Log4j. http://logging.apache.org/log4j/docs/ .

[9] T. MACKINNON, S. FREEMAN, and P. CRAIG, Endo-Testing: Unit Testing with Mock
Objects, in Extreme Programming Examined, G. Succi and M. Marchesi, eds.,
Addison-Wesley, 2001.
http://www.connextra.com/aboutUs/mockobjects.pdf .

[10] A. MACWILLIAMS, DWARF – Using Ad-Hoc Services for Mobile Augmented Reality
Systems, Master’s thesis, Technische Universität München, Institut für Informatik, Feb.
2001.

[11] A. MACWILLIAMS, T. REICHER, and B. BRÜGGE, Decentralized Coordination of
Distributed Interdependent Services, in IEEE Distributed Systems Online – Middleware
’03 Work in Progress Papers, Rio de Janeiro, Brazil, June 2003.

[12] V. NOVAK, C. SANDOR, and G. KLINKER, An AR Workbench for Experimenting with
Attentive User Interfaces, in Proc. of IEEE and ACM International Symposium on Mixed
and Augmented Reality, Arlington, VA, USA, Nov. 2004. To appear.

[13] D. PUSTKA, Visualizing Distributed Systems of Dynamically Cooperating Services.
wwwbruegge.in.tum.de/pub/DWARF/OberSeminar/SEPPustka.pdf , mar
2003.

[14] Mathworld. http://mathworld.wolfram.com .

32

http://members.pingnet.ch/gamma/junit.htm
http://wwwbruegge.in.tum.de/DWARF/WebHome
http://wwwbruegge.in.tum.de/pub/DWARF/SepGeipel/SEP.pdf
http://www.junit.org
http://logging.apache.org/log4j/docs/
http://www.connextra.com/aboutUs/mockobjects.pdf
wwwbruegge.in.tum.de/pub/DWARF/OberSeminar/SEPPustka.pdf
http://mathworld.wolfram.com

Bibliography

[15] G. REITHMAYR, On Software Design for Augmented Reality, PhD thesis, Technische
Universität Wien, Institut 188 für Software Technologie und Interaktive Systeme, Mar.
2004.

[16] CAR Project Homepage. http://wwwbruegge.in.tum.de/projects/
lehrstuhl/twiki/bin/view/DWARF/ProjectBar .

[17] M. WAGNER and G. KLINKER, An Architecture for Distributed Spatial Configuration of
Context Aware Applications, in 2nd International Conference on Mobile and Ubiquitous
Multimedia, Norrköping, Sweden, 2003.

[18] XMLBuddy. http://xmlbuddy.com/ .

33

http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectBar
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectBar
http://xmlbuddy.com/

	Table of Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 Augmented Reality
	1.2 DWARF
	1.3 Motivation
	1.4 Goals

	2 Requirements for the Design of Performant Networks
	2.1 Communication
	2.2 Networking
	2.3 Performance
	2.3.1 Processes and Threads
	2.3.2 Java Reflection

	3 Implementation
	3.1 Classes
	3.1.1 PluginLauncher
	3.1.2 PluginService
	3.1.3 PluginFactory
	3.1.4 Plugin
	3.1.5 ContextSwitch

	3.2 Testing

	4 Filters and Networks
	4.1 Filters
	4.1.1 Geometric Filters
	4.1.1.1 Rotation
	4.1.1.2 Translation
	4.1.1.3 RangeFilter
	4.1.1.4 Distance

	4.1.2 Statistic Filters
	4.1.2.1 SpeedFilter
	4.1.2.2 ThresholdFilter
	4.1.2.3 Confidence
	4.1.2.4 WeightedAverage

	4.2 Example

	5 Howto
	5.1 Write a Plugin
	5.1.1 Plugin Class
	5.1.1.1 Input
	5.1.1.2 Output
	5.1.1.3 AttributesHaveChanged
	5.1.1.4 ContextSwitch

	5.1.2 Service Description

	5.2 Use Plugins
	5.2.1 Start Plugins
	5.2.2 Configure Services

	5.3 Test Plugins
	5.3.1 Write a Test Case

	6 Conclusion
	6.1 Performance
	6.1.1 Event online time
	6.1.1.1 Test of Multithreaded Services
	6.1.1.2 Test at different frequencies

	6.1.2 Java Reflection

	6.2 Discussion
	6.2.1 One Service -- One Plugin
	6.2.2 General
	6.2.3 Usability

	6.3 Lessons learned
	6.4 Future work
	6.4.1 Inprocess autostart
	6.4.2 Huge networks
	6.4.3 Method Calls
	6.4.4 Graphical User Interface
	6.4.5 Velocity Datatype

	Bibliography

