Using Laser Projectors for Augmented Reality

Björn Schwerdtfeger
Outline

• Applications
 – Quality assurance
 – Maintenance

• Problems
 – 1) Projecting on arbitrary surfaces
 – 2) Accuracy and sources of error
 – 3) Where to mount the projector

• Current system
 – Setup
 – Accuracy evaluation

• Summary
Applications 1: Quality Assurance in Series Production

Inspection of welding points on white bodies

- E.g car doors
- Each 25th door
- Varying points (due to previous quality)
- Different methods of inspection
 - e.g viewing, ultrasound, destructive testing
Applications 2: Maintenance Support

• Display of the maintenance workflow

• Requirements
 – Mobile
 – Quick and easy set-up
Problems

• 1) Projection on arbitrary surfaces
• 2) Accuracy and sources of error
• 3) Where to mount the projector
Problem: 1) Projection on Arbitrary Surfaces

• General
 – Requires presence of a surface
 – Public display

• Photometric and Optical
 – Bright illuminated workplaces
 – Metallic raw objects (e.g. white body)
 • reflecting light mainly in the specular direction
 • minimal amount of light is reflected omnidirectional towards arbitrary viewer positions

• Geometric issues
 – Deep dents, significant surface structure
 – Requires a pre-distorted projection
Problem: 1) Projection on Arbitrary Surfaces
Hybride Display

where-to-act

what-to-do
Problem: 2) Accuracy and Sources of Error

• Accuracy depends on distance between projector and object rather than user and object

• E.g. 1 cm Accuracy required
 – projection distance 2 meters -> requires 5 mrad ≈ 0.3°

• Sources of error
 – Intrinsic calibration
 – Extrinsic calibration (tracking)
 • use inside-out (better rotation)
 • instead of outside-in (better translation)
 – Cheap laser scanners
Problem: 3) Where to Mount the Projector

• Occlusion
 – By user (standing in the line of projection)
 – By object itself (protruding parts)

• Solutions
 – Optimized projector placement (next Slide)
 – Smart projection (not yet solved)
Problem: 3) Where to Mount the Projector

• Head/shoulder-mounted projector
 – Unlimited field of projection
 – No occlusion problems
 – Has to be light-weight
 • Accurate scanners are heavy
 • Needs accurate and fast tracking
 – Acceptability

• Room mounted
 – Slow but robust tracking
 – No weight limitations
 – Limited field of projection
 – Occlusion problem
 – Potentially expensive
Current System

• Tripod mounted: balances some tradeoffs

• Still movable - reconfigurable
 – does not suffer from limited range of a room-mounted setup

• More weight possible
 – scanning
 – extra sensing hardware

• No fast tracking required
Current System

- **Inside-out tracking**
 - Theoretically better than outside-in

- **Fish-eye camera**
 - Tracked object always in Fiels of view
Current System: Accuracy Evaluation

Outside-In Tracking vs. Inside-Out Tracking
Current System: Accuracy Evaluation
Current System: Accuracy Evaluation

Outside-In Tracking
Current System: Accuracy Evaluation

Inside-Out Tracking
Current System: Accuracy Evaluation

Extrema of the Projection Field

Error: 5 mrad ≈ 0.3°
Current System: Accuracy Evaluation

• Conclusion:
 • In theory
 • Inside-Out should outperform the Outside-In
 • In practice
 • having a large tracking area...

• A different setup will look different.... come and see it next door