Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Hauptseminar/Master Seminar: Deep Learning for Medical Applications

Prof. Nassir Navab, Dr. Shadi Albarqouni; Ari Tran, Ashkan Khakzar

Type: Advanced Seminar Course Module IN8901
Type: Master Seminar Module IN2107
SWS: 2+0
ECTS: 5 Credits
Location: CAMP Seminar Room, 03.13.010
Time: Thursdays, 12-14
Course Language: English


  • 05-02-2019: Registration, through TUM Matching Platform, should be done between 07.02.19 to 13.02.19
  • 11-01-2019: An introductory meeting: Monday, 04.02.2019 (13:15-14:00) in CAMP Seminar Room, 03.13.010.
  • 08-01-2019: Website is up!


  • Deep Learning is growing tremendously in Computer Vision and Medical Imaging as well. Highly impacted journals in the medical imaging community, i.e. IEEE Transaction on Medical Imaging, published recently their special edition on Deep Learning [1]. The Seminar will propose a list of recent scientific articles related to the main current research topics in deep learning for Medical Applications together with some interesting papers from other communities.


  • Interested students should attend the introductory meeting to enlist in the course.
  • Students can only register through TUM Matching Platform themselves if the maximum number of participants hasn't been reached (please pay attention to the Deadlines).
  • A maximum number of participants: 15.


In this Master Seminar (formerly Hauptseminar), each student is asked to send three preferences from the list, then he will be assigned one paper. In order to successfully complete the seminar, participants have to fulfill these requirements:

  • Presentation: The selected paper is presented to the other participants (20 minutes presentation 10 minutes questions). Use the CAMP templates for PowerPoint camp-tum-jhu-slides.zip, or Latex: CAMP-latex-template.
  • Written Report: A document of maximum 2 pages should be submitted before the deadline.
  • Attendance: Participants have to participate actively in all seminar sessions.

The students are required to attend each seminar presentation which will be held during this course. Each presentation is followed by a discussion and everyone is encouraged to actively participate. The report must include all references used and must be written completely in your own words. Copy and paste will not be tolerated. Both the report and presentation have to be done in English.

You need to upload your presentation together with your report here. A detailed description is written in the Readme file inside the repository. Please create your account on LRZgit and request access to the repository.

Submission Deadline : You have to submit both the presentation and the written report two weeks right after your presentation session. Your access to the repository will not be any longer granted after the deadline.

Schedule (Tentative)

Date Session: Topic Slides Students
04.02.2019 Preliminary Meeting Slides  
Online Paper Assignment    
25.04.2019 No Class    
02.05.2019 Presentation Session 1: Supervised Learning    
09.05.2019 Presentation Session 2: Unsupervised Learning    
16.05.2019 Presentation Session 3: Semi/Weakly/Webly-Supervised Learning    
23.05.2019 Presentation Session 4: Network Understanding    
06.06.2019 Presentation Session 5: Selected topics (Domain Adaptation / Meta Learning / Uncertainty)    
27.06.2019 Tentative    
04.07.2019 Tentative    
18.07.2019 Final Session    

List of Topics and Material

The list of papers:

Topic No Title Conference/Journal Tutor Student (Last name) Link

If you are assigned a paper from MICCAI you are requested to present briefly one more work related to the topic that will be determined by your tutor, since MICCAI papers are significantly shorter than the other given options.

MICCAI: Medical Image Computing and Computer Assisted Intervention
CVPR: Conference on Computer Vision and Pattern Recognition
ICLR: International Conference on Learning Representations
TMI: IEEE Transaction on Medical Imaging
JBHI: IEEE Journal of Biomedical and Health Informatics
MedIA: Medical Image Analysis (Elsevier)
TPAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence
BMVC: British Machine Vision Conference
MIDL: Medical Imaging with Deep Learning
NIPS: Neural Information Processing Systems

Literature and Helpful Links

A lot of scientific publications can be found online.

The following list may help you to find some further information on your particular topic:

Some publishers:

Libraries (online and offline):

Some further hints for working with references:

  • JabRef is a Java program for comfortable working with Bibtex literature databases. Handy feature: if you know the PubMed ID for an article, JabRef can import data from there (via "Web Search/Medline").
  • Mendeley is a cross-platform program for organising your references.

If you find useful resources that are not already listed here, please tell us, so we can add them for others. Thanks.

Title: Deep Learning for Medical Applications
Professor: Prof. Nassir Navab
Tutors: Dr. Shadi Albarqouni; Ashkan Khakzar, Ari Tran
Type: Hauptseminar
Information: Hauptseminar, SWS: 2, ECTS: 5
Term: 2019SoSe

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 21 Feb 2019 - 15:12 - ShadiAlbarqouni

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif