
A Combined Generalized and Subject-Specific 3D Head Pose Estimation

David Joseph Tan1, Federico Tombari1,2, Nassir Navab1

1CAMP, Technische Universität München
2DISI, Università di Bologna

{tanda,tombari,navab}@in.tum.de, federico.tombari@unibo.it

Abstract

We propose a real-time method for 3D head pose estima-
tion from RGB-D sequences. Our algorithm relies on a Ran-
dom Forest framework that is able to regress the head pose
at every frame in a temporal tracking manner. Such frame-
work is learned once from a generic dataset of 3D head
models and refined online to adapt the forest to the spe-
cific characteristics of each subject. Through the qualita-
tive experiments under different conditions, it demonstrates
remarkable properties in terms of robustness to occlusions,
computational efficiency and capacity of handling a variety
of challenging head poses. In addition, it also outperforms
the state of the art on the reference benchmark dataset with
regards to the accuracy of the estimated head poses.

1. Introduction
Estimating the pose of the heads that appear in a se-

quence of frames is an increasingly relevant task in com-
puter vision, given the wealth of applications that rely on
such task as a required step to achieve higher level goals.
For instance, this is the case of several human-computer in-
teraction systems that estimates input commands from the
user by specific configurations of its facial features, which
are now particularly relevant, e.g. in the gaming industry.
In addition, head pose estimation is relevant for human be-
havior analysis and gaze analysis applied to faces, e.g. to
automatically understand when the driver of a vehicle falls
asleep. Finally, it is a key step for augmented reality appli-
cations, e.g. in the fashion industry for virtual mirrors ap-
plied to headwear, jewellery and eyewear, as well as in the
context of 3D avatar creation for video conferencing and
special effects.

Since head pose estimation aims to find the 6-degree-
of-freedom of the head’s rigid transformation in 3D space
at each frame, state-of-the-art techniques [7, 14, 15, 17]
employ 3D data as input in order to provide higher accu-
racy, such as the data provided by consumer RGB-D cam-
eras (Microsoft Kinect, Asus Xtion). In particular, these

Figure 1. Close-up examples of the pose estimation results with
different levels of occlusion. The bounding box and the colors
symbolize the location of the back-projected points from the depth
image in the model coordinate frame of the head.

methods are based on the tracking-by-detection paradigm,
where the head detection and pose estimation is carried out
in each frame independently from the previous ones. To
achieve this goal, Hough Forests and Regression Forests
proved to be effective in estimating the head’s pose, after
being trained on thousands of real depth images acquired
from multiple people while moving their heads.

Instead, our work aims at performing head pose esti-
mation from RGB-D data by means of a frame-to-frame
temporal tracking approach, that incorporates the tempo-
ral information to estimate the head’s pose throughout the
video sequence. It is inspired by the object temporal
tracker [19, 20] that uses depth images and Regression
Forests to estimate the pose of an object from one frame
to the next. However, in contrast to tracking an object with
a precise 3D CAD model in [19, 20], we are addressing
problems that generalizes the tracker for different varia-
tions of the head structures (i.e., small deformations from a
generic model). It involves combining a generalized model-
based tracker with an online learning method to capture
subject-specific structures that makes the tracker more ro-
bust against noise, occlusions and facial deformations.

Moreover, as a temporal tracking approach, it requires
an initialization when a new face appears in the sequence or
when the tracker loses the target. For this reason, we inte-
grate an initialization stage based on a face detector [21]
through the RGB images available from the RGB-D se-
quences. This allows our method to handle a variety of sit-
uations such as the absence of people in some frames of the
sequence, as well as the simultaneous presence of more than
one person in the scene.

Therefore, the proposed algorithm focuses on achieving
a wide range of applications, motivated by the following
fundamental criteria:

(1) Robustness. Accuracy is the most important aspect to
consider in head pose estimation because it is the input
to the applications that observe the interaction of the user
with the objects or interaction among users. It follows
that the accuracy must be robust in the presence typical
occlusions such as eyeglasses and hand gestures, as well
as robust in the presence of sensor artifacts such as holes
and noise from depth cameras.

(2) Efficiency. We evaluate the efficiency of the algorithm
in terms of the runtime per frame with the required pro-
cessing power and memory consumption. It is ideal to
attain low runtime with a low processing power and a
low memory consumption.

(3) Lax users. The algorithm is capable of estimating the
pose within the camera’s field of view such that the users
can move freely without being mindful of its position
on the image. It must not restrict the users to stay on a
specific distance from the camera or remain in a static
position that is close to the principal point of the image.

(4) Ease of use. When running the algorithm, the users are
not required to have any special skills or to perform any
prerequisite steps. It implies that the algorithm does not
require any a priori input information about the user.

Hence, our approach is guided by these criteria to ensure
that our algorithm is easily adaptable for several diverse ap-
plications. Conforming to them, the quantitative results in
our evaluation, obtained on the benchmark dataset [7] for
3D head pose estimation, demonstrate the remarkable accu-
racy, efficiency and robustness of our approach, which out-
performs the state-of-the-art methods in terms of accuracy
under different nuisances while retaining a much higher ef-
ficiency. In addition, the qualitative results also demonstrate
the effectiveness and generality of our method under differ-
ent occlusions, various user movements and extreme poses.

2. Related work
A survey on different head pose estimation algorithms is

available in [13]. Several works on head pose estimation
that rely on RGB images only focus on tracking facial fea-
tures or landmarks instead of estimating the 3D pose of the

head [1, 5, 6, 11, 12, 18] or on discretizing the pose to gen-
erate crude approximations [9, 10]. Unlike a rigid object
with a constant structure that has a one-to-one relation from
the image space to 3D space, the head structure differs from
one subject to the next, which means that the landmarks do
not have corresponding 3D points and their estimated pose
is inaccurate due to the lack of depth perception of the sub-
ject in RGB images.

As for methods based on depth images, Breitenstein et
al. [4] proposed to build a set of hypotheses by means of
high-resolution depth images to locate the nose through 3D
shape signatures and evaluate the hypotheses by comput-
ing the error from the reference pose image. Due to its
computational requirements, this work uses GPU to run in
real-time. Later, Fanelli et al. [8] also used high-resolution
images but achieved real-time performance without GPU
implementation and can handle small occlusions. Another
relevant work from Fanelli et al. [7] proposes a tracking-
by-detection framework based on Random Forest from con-
sumer depth camera data. Their splitting features involves
locating two 2D patches with random offsets and sizes from
a pixel and computing the difference of the mean depth val-
ues enclosed in the patches. Each pixel predicts the yaw,
pitch and roll angles for the head’s rotation and a 3D vector
to locate the nose.

With a similar 2D image features in learning as well as
the parametrization of the three angles and a vector, sev-
eral forest-based methods [14, 15, 17] continued the work
of [7]. Among them, Schulter et al. [17] proposes Alternat-
ing Regression Forests (ARFs) that relates the trees in the
forest by optimizing a global loss function, where their ap-
proach on head pose estimation uses the same 2D features
as [7]. In [14], they evaluate four 2D patches as features in
learning and introduce the Probabilistic Locally Enhanced
Voting (PLEV) to locally aggregate the predictions of their
Hough Forest. Finally, Riegler et al. [15] presents a combi-
nation of Hough Forests and Convolutional Neural Network
for head pose estimation, which they call Hough Networks
(HN). This approach extracts overlapping 2D patches in a
regular grid on the image, where each patch is classified as
foreground or background, and use the foreground patches
to predict the pose parameters.

Primarily, these learning-based methods [7, 14, 15, 17]
use 2D features to directly predict the 3D pose. However,
by omitting the 2D-3D correspondence, when the head is
translated around the camera’s field of view, the 2D fea-
tures cannot distinguish the relation between object’s proc-
jetive view and the corresponding transformation parame-
ters. Fig. 2 illustrates a simple example of the problem.
Similar to [7, 14, 15, 17], the learning dataset includes head
poses at the center of the image. One of the images in the
learning dataset is shown in Fig. 2(a). After learning, we ob-
serve the pose prediction when translating the head in one

(a) (c)(b)

Figure 2. (a) is a rendered depth image of a head model located
at the center of the image while (b-c) are rendered images of the
same model after imposing a 3D translation towards the direction
of the x-axis of the image.

direction from Fig. 2(a) to Fig. 2(b-c). Since the translation
does not affect the rotation matrix, the ground truth rotation
parameters for all images in Fig. 2 are the same. But, due
to the projective transformation of the camera, the view of
the head changes when translated. It follows that the values
generated by the 2D features are different across Fig. 2(a-c).
This leads to different predictions of the rotation parameters
in Fig. 2(b-c) compared to Fig. 2(a), which are incorrect.
When looking closely at Fig. 2(b-c), the farther the trans-
lation from Fig. 2(a), the projected image becomes more
distinct and introduces larger errors.

One can argue to include the poses that are not at the cen-
ter of the image such as Fig. 2(b-c) into the learning dataset.
Nonetheless, the problem in using 2D features can also be
extended to have multiple identical projective views on the
image but with distinct transformation parameters. For in-
stance, we can generate a similar view as Fig. 2(c) that is
located at the center of the image with a different set of ro-
tation and translation parameters. Then, when incorporating
all of them into the learning dataset, the learning algorithm
becomes confused in distinguishing which set of transfor-
mation parameters to associate each of the identical views.

In contrast, we do not have these problems since we are
utilizing 3D points to describe the 3D structure of the head
and to predict the 3D pose. Although the standard dataset
from [7] restricts the location of the subject to be close to the
principal point of the image, we illustrate several examples
in Fig. 7 where the lax users can freely roam around the
image. In addition, the problems related to the 2D features
explain why our method generate high accuracy with only
half the error of the other methods [7, 14, 15, 17] in Sec. 4.

We also demonstrate the efficiency of the algorithm to
track in less than 2 ms per frame. Furthermore, while
other approaches generalize their learning method to esti-
mate the head pose of any subject, our work emphasizes the
value of a combined generalized and subject-specific learn-
ing framework to become robust to handle large occlusions
(Fig. 1) and extreme poses (Fig. 7(b)), where a significant
amount of the facial features are not visible.

3. Proposed head pose estimation method

Given a sequence of RGB-D images, the objective is to
find the 3D pose of the head in each frame. Suppose that

the coordinates of the head are located in the model coor-
dinate system, we define the pose as a 4×4 rigid transfor-
mation matrix T that transforms the points from the model
coordinate system to the camera coordinate system, which
is parameterized with:

T = R(α, β, γ) ·
[
I3×3 t̃
0> 1

]
(1)

where α, β and γ are the yaw, pitch and roll angles,
while t̃ = [tx, ty, tz]

> is the translation vector. The
six transformation parameters construct the vector µ =
[α, β, γ, tx, ty, tz]

>. Hence, given nh 3D points on the head
as {Xh}nh

h=1, we fit these points into the depth image D by
observing the individual signed displacement function:

εvh(T;D) = N>v
(
T−1D(xh)−Xh

)
(2)

where xh are the projection of TXh onto the image, D(x)
is the back-projection of the pixel x in D and Nv is a unit
vector which is the direction of the displacement.

Our method is a temporal tracker that relays the pose
from one frame to the next. It uses Random Forest [3] to
learn the relation between the displacements εvh from the nh
points on the head and the six parameters of T. Then, at
time t, we utilize the given pose at t − 1 in the error func-
tion as εvh(Tt−1;Dt) to predict the changes in transforma-
tion T̂t from t−1 to t through learned forest and update the
subsequent pose as Tt = Tt−1T̂t. To initialize the tracker,
the face is detected at t0 by means of a face detection algo-
rithm that processes the RGB frame generating, as output,
a 2D bounding box. This acts as input to the tracker, where
the box needs to be back-projected in the 3D domain, since
the tracker only uses the depth images to compute the head’s
pose throughout the sequence.

As for tracking, we propose to combine a generalized
model-based tracker with a subject-specific online learning
to adapt the generalized forest with the unique head struc-
tures of the subject. Between them, the generalized tracker
learns the subject-independent facial structures based on
multiple head models to predict the poses. Then, while
tracking with the generalized model, we incrementally learn
new trees from the input depth images to describe subject-
dependent head structures. In this way, the subject-specific
trees stabilize the entire forest to handle large occlusions
and extreme head poses, where the generalized model is re-
stricted to perform.

On one hand, the advantage of the generalized method
is its capacity to align the tracked poses from multiple sub-
jects into one coordinate system. In contrast, the subject-
specific online learning builds the forest on the fly and does
not consider the relation of one subject to the rest. Then, the
resulting pose also becomes subject-specific and difficult to
use in real applications. On the other hand, in the process

Figure 3. The head model from different subjects using the
database of [7] is rendered at a constant v-th camera view, where
the common structure is highlighted in red.

of generalizing, it can only track the common facial struc-
tures across multiple subjects, which creates the limitation
in the amount of poses it can handle and in the robustness to
handle occlusions. This is where the subject-specific online
learning becomes valuable, since it incorporates the head
structures that are unique to an individual subject, which
makes it handle extreme poses and robust to large occlu-
sions. As a result, by combining the two methods, we com-
bine the advantage of a blueprint that consistently aligns
different head models into a unified coordinate system and
the advantage of subject-specific structures that alleviates
the limitations of a generalized model.

3.1. Initialization

We initialize the tracker using the face detector of Viola
and Jones [21] on the RGB image, which yields a 2D rect-
angular region for each detected face in the current frame.
At the centroid of the rectangle xc, the corresponding pixel
value in the depth image is back-projected, which constructs
the initial transformation of the tracker given as:

Tt0−1 =

[
I3×3 D(xc)
0> 1

]
. (3)

Thereafter, we solely use the tracker to estimate the head’s
pose in the current frame with Tt0 = Tt0−1T̂t0 , as well as
the poses in the successive frames.

3.2. Generalized model-based tracking

From a set of CAD models for different subjects, the ob-
jective is to build a generalized temporal tracker based on
Random Forest [3] that performs the pose estimation of the
head on any given subject, irrelevant of whether it is part of
the set of models or not. In this case, learning is conducted
completely on the synthetic depth images of the model and
does not require real depth images.
Common structure. To generalize the tracker, the first
goal is to determine the common structures of the head
across multiple subjects that are visible in their respective
3D CAD models as well as captured by the depth images
for tracking. By observing Fig. 3, the face is the most sim-
ilar structure across different subjects that is consistently
visible in the models and the data captured by the camera.

Assuming that the models from different subjects are
aligned, we define the common structure as the 3D points

(a) Geodesic Grids (b) Used Poses (c) Unused Poses

42

162

642

Figure 4. (a) Geodesic grids [16] with different nv are constructed
by iteratively dividing an icosahedron. From different camera
views, (b-c) are examples of the rendered depth images of a head
model. Depending on the visibility of the common structure (in
red), (b) are poses used for learning while (c) are not.

on the model that are τs away from the origin as shown in
Fig. 3. This implies that we only use these points for track-
ing and the generalized model only tracks the facial struc-
ture of the head.

Camera views. Instead of learning one forest for the en-
tire model, we learn individual forests for different cam-
era views of the model [19, 20], so that each forest focuses
on predicting the transformation parameters from points on
the model that are seen by the camera. Using a geodesic
grid [16] with nv vertices as shown in Fig. 4(a), the differ-
ent camera views of a model is synthetically rendered by
locating the camera on the vertices of the grid and placing
the model in its center. Considering that there are some ren-
dered images where the common structure are not visible
as illustrated in Fig. 4(c), we only use a subset of geodesic
grid’s vertices, where the azimuth angle of the spherical co-
ordinate system is between [0, π] while the polar angle is
between [0, 3π4]. For the v-th camera view and the s-th sub-
ject, the rendered depth image is denoted as Dv

s , where the
model is transformed with Tv from the camera coordinate
system. As a consequence, we learn the v-th forest using
the depth images across different subjects {Dv

s}
ns
s=1. In ad-

dition, we also define Nv from Eq. 2 as the unit vector di-
rected from the model’s origin to the camera location in the
geodesic grid.

Learning dataset. When looking at the v-th view of the
ns subjects used for training, a unified depth image is con-
structed through its mean, computed as:

D̄v =
1

ns

∑
s

Dv
s . (4)

Again, the points on the common structure are collected
and nh points are randomly selected among them. These
points are then transformed to the model coordinate system
with T−1v , and the results are denoted as the set of points on
the model {Xv

h}
nh

h=1. Hence, in tracking, we are optimizing
to fit these points onto the depth image through Eq. 2.

Since tracking aims to update the transformation param-
eters from t− 1 to t, random transforms T̂r are imposed to
simulate the location of {Xv

h}
nh

h=1 at t − 1. The points are
transformed by Tr = TvT̂

−1
r such that an update of T̂r

brings them back to their ground truth location. As a result,
the error introduced by the random transform is described
in Eq. 2, hence the error from the nh points can be accu-
mulated with the vector εvr = [εvh(Tr;D

v
s)]

nh

h=1. Therefore,
together with the transformation parameters τr of T̂r, the
learning dataset is assembled as S = {(εvr , τr)}

ns·nr
r=1 after

transforming with nr random poses on each of the ns sub-
jects. It is noteworthy to mention that D̄v is only used to
determine the set of points on the model and not used to
create the learning dataset.
Learning the forests. Similar to [19, 20], a tree in the
forests learns the relation of εvr and a parameter of µr.
Through the learning dataset, the nodes of the tree continu-
ously split S into two subsets and pass the subsets down to
the children.

At nodeN , splitting is accomplished by a feature θN and
a threshold κN , applied on the subset of the learning dataset
that arrives on the node SN . The feature is an index of the
vector εvr and the threshold is a scalar value that splits SN
into:

Sl = {(εvr , τr) ∈ SN | εvr [θ] ≥ κ} (5a)
Sr = {(εvr , τr) ∈ SN | εvr [θ] < κ} (5b)

where εvr [θ] takes the scalar value of the θ-th index in the
vector, while Sl and Sr are the subsets of SN that go to the
left and right child, respectively. To choose θN and κN , we
individually test all indices of εvr and, for each index, thresh-
old using a range composed of ten linearly spaced values.
The feature and threshold that best splits the set is measured
by the information gain:

G(θ) = σ(SN)−
∑

i∈{l,r}

|Si|
|SN |

σ(Si) (6)

where σ(S) takes the standard deviation of a parameter of
all µ in S. Hence, the pair of (θN , κN) is the one with
the highest information gain. After iteratively splitting SN
to produce deeper trees, the splitting stops either when the
tree reaches its maximum depth, or when σ(SN) is low,
which means that the parameters are homogeneous. Then,
this node stores the mean and standard deviation of the pa-
rameters in all µ from SN .

To learn the multi-view forests, the same process is ap-
plied to different parameters in the µ as well as to different
camera views of the head.
Tracking. With the transformation from t − 1, we com-
pute the camera location X̃c

t−1 = −R̃>t−1t̃t−1 in the model
coordinate system, where R̃t−1 is the 3×3 rotation matrix
of Tt−1 and t̃t−1 is its translation vector. From the learned
multi-view forests, only the neighboring camera views from
the geodesic grid that are within τn angular distance are
taken for evaluation. The input for each view is the vec-
tor εv = [εvh(Tt−1;Dt)]

nh

h=1. Then, the splitting parameters
on the nodes manoeuvre the input towards a leaf, where the
predicted parameter of µ are stored. After evaluating all
trees in the neighboring views, the final parameter values
take the average of the 10% of the predictions with the least
standard deviation. These parameters assemble the transfor-
mation matrix T̂t and updates the pose with Tt = Tt−1T̂t.
Lastly, we iteratively refine the predictions for each frame.

3.3. Subject-specific online learning

While tracking with the generalized model, the subject-
specific online learning aims to learn new trees that incorpo-
rate specific head structures of the subject being tracked and
remove the restriction in tracking only the facial structure
of the generalized model. As input to learning at time t, we
have the depth image Dt and the resulting pose T̂t. Based
on the pose, we locate the corresponding camera location
X̃c
t in the model coordinate system and use a 3D bounding

box to segment the head in the image.
In contrast to Sec. 3.2, the nh points {Xv

h}
nh

h=1 are ran-
domly selected within the 3D points on the depth image
that lie within the bounding box, which are transformed to
the model coordinate system using T−1t . Then, nr ran-
dom transformations T̂r are imposed on these points by
transforming with Tr = TtT̂

−1
r to generate the error vec-

tor εr = [εh(Tr;D
v
s)]

nh

h=1 and build the learning dataset
S = {(εr, τ r)}nr

r=1. Thereafter, learning using S is carried
out in the same way as Sec. 3.2.

As a consequence, during tracking, the neighborhood of
camera views from learning incorporates both the general-
ized and subject-specific trees. After comparing the result-
ing camera location in tracking and the camera locations
from all the learned views through the angular distance be-
tween them, the trees that are within τn are evaluated. The
final transformation parameters are the mean of the predic-
tions from the trees.

3.4. Failure detection

We determine if tracking fails based on the confidence
of the predictions from the final iteration. Considering the
mean of the standard deviation from different trees, we im-
pose that the confidence of the prediction is low if the mean
is above τc. After having low confidence for nf consecutive

(b) Subject-Specific(a) Generalized (c) Online

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0 5 10 15 20

Su
cc

es
s

R
at

e

Threshold

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0 5 10 15 20

Su
cc

es
s

R
at

e

Threshold

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0 5 10 15 20

Su
cc

es
s

R
at

e

Threshold

Translation

X

Y

Z

Rotation

Yaw

Pitch

Roll

Figure 5. Success rates with varying thresholds for the error in
translation (in mm) and rotation (in degrees), based on the (a) gen-
eralized (b) subject-specific or (c) online learning scheme.

frames, we conclude that tracker failed. Subsequently, the
tracker performs re-initialization using Sec. 3.1.

4. Evaluation

We evaluate our algorithm using the Biwi Kinect Head
Pose Database [7], which is arguably the most relevant pub-
lic dataset with ground truth for head pose estimation from
3D data. It consists of 24 sequences from 20 different peo-
ple with a total of approximately 15K images, where all
images are labeled with the ground truth pose of the head.
Each sequence includes one subject out of the 20 people
appearing in the dataset, who stands approximately 1 meter
away from the camera and close to the principal point of the
image. The objective is to estimate the head pose while the
subject rotates his head within ±75◦ yaw, ±60◦ pitch and
±50◦ roll angles. In addition, the database also includes
subject-specific 3D CAD model for each sequence.

The error of the estimated pose is evaluated by com-
puting the difference of the translation in the x-, y- and
z-axis, as well as the rotation in the yaw, pitch and roll
angles from the ground truth. Among the errors, we list
the mean and standard deviation in Table 1, with the ex-
clusion of the missed poses which have a translation error
above 20 mm [14] or 50 mm [7, 15, 17]. Similarly, we
also compute the success rate based on the percentage of
estimated poses that have errors below a specified threshold
in Table 2 and Fig. 5. Based on these outcomes, we com-
pare our results with those reported in the papers of the four
state of the art methods, namely Hough Forest (HF) [7],
Hough Forest with Probabilistic Locally Enhanced Voting
(PLEV) [14], Alternating Regression Forests (ARF*) [17]
and Hough Networks (HN) [15].

While this standard procedure aims at evaluating the 3D
pose accurately at each frame, we are also interested in eval-
uating the convergence rate of our tracker. To achieve this
goal, we multiply the ground truth pose at each frame with
a random rigid transformation, so to mimic the noisy pose
from the previous frame. Then, for each iteration, we plot
in Fig. 6 the average error in rotation and translation as well
as the average distance from of the model’s vertices trans-
formed using the estimated pose to vertices transformed us-

(b) Translation(a) Rotation (c) Distance

Generalized Subject-Specific Online

0

2

4

6

8

10

12

14

16

0 5 10 15

Er
ro

r
(m

m
)

Iterations

0

2

4

6

8

10

12

0 5 10 15

Er
ro

r
(m

m
)

Iterations

0

2

4

6

8

10

12

0 5 10 15

Er
ro

r
(d

e
gr

ee
s)

Iterations

Figure 6. Convergence rates of the (a) rotation, (b) translation,
and (c) distance from the model’s vertices transformed using the
estimates pose to the vertices with the ground truth pose.

ing the ground truth.
In this section, we evaluate and compare three learn-

ing strategies from our method – generalized model-based
learning in Sec. 4.1, subject-specific model-based learn-
ing in Sec. 4.2 and the combined generalized tracker with
subject-specific online learning in Sec. 4.3. Individually,
our tracking approaches achieve better accuracy and effi-
ciency than the state-of-the-art methods [7, 14, 15, 17]. Fur-
thermore, the qualitative results in Fig. 7 demonstrate the
robustness and the range of applicability in real scenarios.

For the generalized tracker, the geodesic grid is con-
structed with 642 vertices, where 332 of them are used
after filtering through the azimuth and polar angles in the
spherical coordinate system. In each camera view, we use
nr = 2500 random transformation for each subject and
nh = 20 points on the model to learn one tree per parameter
with a maximum depth of 20 and maximum standard devi-
ation of 0.1. The same learning parameters are used for the
two subject-specific learning methods. Moreover, follow-
ing Sec. 3.1, the tracker is initialized using OpenCV’s face
detector [2] which takes approximately 9.1 ms per frame.
All evaluations are conducted using Intel(R) Core(TM) i7-
3820QM CPU with 16 GB RAM.

4.1. Generalized model-based tracking

To evaluate the generalizability of our algorithm, we use
the same experimental framework as [7], where we learn
using 18 subjects and evaluate on the remaining two. How-
ever, our learning scheme relies purely on synthetic data
without using the acquired real RGB-D images. In effect,
we render depth images through the given 3D model of the
head from the 18 subjects in the dataset. Subsequently, we
compare our results with [7, 14, 15, 17], where all compet-
ing approaches use real images in the database for learning.

Robustness. Table 1 emphasizes that our results de-
creases the errors in rotation and translation of the state of
the art by half. In addition, we achieve better results across
all parameters without any missed pose estimation. These
results entail a 100% success rate with a threshold of 20 mm
for translation and 20◦ for rotation in Table 2. Our method
improves the best results [15] by a 5% increase in transla-

HF [7] PLEV [14] ARF* [17] HN [15] Generalized Subj.-Specific Combined

Translation (mm) 12.8 ± 6.8 7.2 ± 12.1 10.8 ± 6.9 8.1 ± 5.3 4.2 ± 1.8 2.1 ± 1.0 5.4 ± 2.3
X 6.9 ± 6.7 – 5.5 ± 5.6 3.8 ± 4.5 1.3 ± 0.9 0.9 ± 0.7 2.3 ± 1.9
Y 7.4 ± 5.6 – 6.2 ± 6.1 4.6 ± 4.0 3.1 ± 2.1 1.4 ± 1.1 2.8 ± 2.1
Z 4.7 ± 3.4 – 4.1 ± 3.1 3.7 ± 3.0 1.8 ± 1.2 0.9 ± 0.6 2.7 ± 2.4

Rotation (degrees) 14.3 ± 10.0 7.3 ± 5.9 12.2 ± 9.0 9.8 ± 8.0 3.2 ± 1.6 1.9 ± 1.1 4.2 ± 2.7
Yaw 5.7 ± 6.1 4.1 ± 6.9 5.5 ± 5.5 3.8 ± 3.7 1.9 ± 1.6 1.3 ± 1.2 2.0 ± 1.6
Pitch 9.7 ± 8.9 3.9 ± 4.0 7.8 ± 7.9 6.7 ± 6.6 2.3 ± 1.7 1.0 ± 0.9 2.7 ± 2.5
Roll 5.9 ± 5.2 3.2 ± 3.0 5.0 ± 4.4 4.3 ± 4.9 1.0 ± 1.0 1.0 ± 1.0 2.1 ± 2.2

Missed 5.0% 5.0% 3.0% 1.0% 0.0% 0.0% 0.0%
Runtime (ms) 17.8 – – 66.7–100.0 1.8 1.4 26.9 + 1.2

Table 1. Based on the Biwi Kinect Head Pose Database [7], comparison of the mean and standard deviation of the errors in translation
and the rotation angles, the percentage of missed pose estimation, where the error of the translation is above 20 mm for [14] or 50 mm
for [7, 15, 17], and runtime per frame. We compare our generalized model-based learning method, subject-specific model-based learning
method, and combined generalized model-based and subject-specific online learning method with other existing approaches [7, 14, 15, 17].

Trans. (20 mm) Rotation (20◦)

HF [7] 82.99% 73.29%
PLEV [14] 95.00% –
ARF* [17] 88.30% 80.37%

HN [15] 95.11% 88.86%
Generalized 100.00% 100.00%

Subj.-Specific 100.00% 100.00%
Combined 100.00% 100.00%

Table 2. Success rate of different methods where the error in
translation is less than 20 mm or the rotation angle is less than
20◦. The list of competing methods are the same as Table 1.

tion and 11% increase in rotation. Considering that other
works achieve a maximum success rate of 95.11% in Ta-
ble 2, Fig. 5(a) shows that we reached 95.2% with a thresh-
old of 8 mm in translation and 97.7% with a threshold of 7◦

in rotation. Throughout the evaluations, based on Fig. 6, ten
iterations guarantee that the error values have converged.

Efficiency. Our algorithm runs at 1.8 ms per frame with a
single core CPU and a memory consumption of 46.0 MB.
Compared to the other works [7, 15] that runs in real-time in
Table 1, this is approximately one order of magnitude lower.

It is noteworthy to mention that other works [7, 15] run in
real-time because the scene in the dataset is almost empty:
each frame includes one person, visualized from head to
torso. Since they employ a tracking-by-detection frame-
work that jointly estimates the pose and segments the head
in every frame independently, their runtime increases when
the scene is not controlled and the detector is required to
distinguish the face from the surrounding objects, such as a
scene where a person is sitting on a couch or holding tools.
Nonetheless, since we are utilizing a temporal tracker, our
runtime is constant and is independent of the surrounding
objects in the scene.

4.2. Subject-specific model-based tracking

Instead of using a generalized model as in Sec. 4.1, we
also learn using the subject-specific CAD models and com-
pare with the other results. As a consequence, the subject-
specific learning scheme generates the least error in Ta-
ble 1, while maintaining the 100% success rate in Table 2
and achieving the best success rate for individual parame-
ters in Fig. 5(b). Furthermore, it continues converging to a
smaller error after four iterations in Fig. 6. In terms of ef-
ficiency, it requires approximately 3.5 MB in memory and
tracks 1.4 ms per frame with a single core.

4.3. Subject-specific online learning

The superiority of the subject-specific learning across all
evaluations in Sec. 4.2 demonstrates the value of tracking
unique structures that is particular to the subject. However,
the learning methods of both Sec. 4.1 and Sec. 4.2 are done
offline. It follows that the reconstruction of the CAD mod-
els for individual subjects is done beforehand but requiring
an a priori knowledge of the subject hinders its application
to directly track the head of any user in the camera’s field
of view. Hence, the subject-specific model-based learning
method is time-consuming and limited in real applications.

One of the main novelties of our work is to incorpo-
rate subject-specific structures through online learning by
incrementally accumulating trees from different viewpoints
of the subject’s head. Using the generalized method from
Sec. 4.1 to track, we take the depth image of the current
frame and the tracked pose to learn new trees, which are
added into the existing forest. In this way, we continuously
track and learn the head structure to increase the number of
subject-specific trees in the forest.

Standard dataset. We also evaluate the combined gener-
alized tracker with the subject-specific online learning in
Table 1. Our combined method performs slightly worse

(a) Skype Conversation (b) Wearing a Mask

Figure 7. These video sequences are taken (a) while observing a
Skype conversation from multiple subjects and (b) while the sub-
ject wears a mask and moves around. These illustrate occlusions
from (a) hand gestures and (b) external objects. In addition, (b)
shows the robustness of the pose estimation in extreme poses.

than the model-based generalized tracker with 1.2 mm more
error in translation and 1.0◦ more in rotation. But they have
the same performance with regards to the success rate in
Table 2 and Fig. 5(c), as well as the convergence rate in
Fig. 6. Evidently, the reason for having a slightly higher
error value of the combined method than the generalized
model-based tracker is because the online learning is ini-
tially guided by the generalized tracker. This implies that
the resulting tracker cannot have less error than the gener-
alized tracker. However, Table 1 also highlights that the
combined method outperforms any of the other competing
works [7, 14, 15, 17].

In terms of efficiency, the forest consumes the same ini-
tial memory as the generalized method with an additional
13 KB for the trees associated to each of the learned image.
With 8 CPU cores, it runs at 26.9 ms for online learning and
1.2 ms for tracking. It is noteworthy to mention that not
all tracked frames are used for learning new trees, and the
geodesic grid limits the number of trees for the viewpoint
that are close to each vertex.

Limitation of the generalized model. Although the error
of the subject-specific online learning in Sec. 4.3 is slightly
higher compared to the generalized model-based tracker, its
advantage is demonstrated when running real-world appli-
cations as shown in Fig. 7 and the Supplementary Materials.

Considering that there are no ground truth poses for the
two video sequences in Fig. 7, we compare the tracker with
and without the online learning by computing the percent

of frames where the algorithm detects failure and requires
re-initialization as discussed in Sec. 3.4. The generalized
tracker detects 53.5% of the frames as failure in Fig. 7(a)
and 42.5% in Fig. 7(b). Conversely, the combined method
does not detect any failure. This is because, as opposed to
the dataset of [7], the users are no longer constrained and
can move freely within the camera’s field of view. Here,
occlusions on the face from hand gestures in Fig. 7(a) are
more common, which affect the robustness of the general-
ized tracker. Basically, the generalized model-based track-
ing learns the facial structure while online learning learns
the entire head structure. This makes the generalized model
more sensitive to facial deformations such as talking as well
as facial occlusions.

Another limitation of the generalized tracker is the ex-
treme poses, such as Fig. 7(b), which are excluded in learn-
ing as shown in Fig. 4(c). Nonetheless, the online learner
adapts the forest to handle the extreme poses, where the sub-
stantial structures of the facial features are no longer visible.

5. Conclusion

Given a video sequence of RGB-D images, we address
the problem of head pose estimation, where the RGB image
is used in the first frame to detect the face [21] and initial-
ize the tracker, while the depth image is used to temporally
track the head pose throughout the sequence using a Ran-
dom Forest algorithm.

This paper highlights three types of tracking – the gen-
eralized model-based tracking, the subject-specific model-
based tracking as well as the combined generalized tracker
with the subject-specific online learning. Individually, they
achieve state-of-the-art results on the standard dataset [7]
with higher success rates and lower error values compared
to other methods [7, 14, 15, 17].

The choice of using one of the trackers depends on the
application at hand. Notably, the difference between the
model-based learning and online learning is that: (1) the
former tracks the common facial structure while the latter
tracks the head; and, (2) the former has a unified reference
coordinate system while the latter has local coordinate sys-
tem that varies from one tracker to the rest. Therefore, for a
controlled environment where the face is visible such as the
dataset in [7], the generalized model-based tracker is suffi-
cient; and, if the subject’s head model is given, the subject-
specific model-based tracker is the best option. However,
for a wider range of applications where the subjects oc-
clude their faces with hand gestures or move freely around
the camera’s field of view as shown in Fig. 7, the choice of
using the combined method becomes necessary due to its
robustness to handle large occlusions and extreme poses.

References
[1] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Incre-

mental face alignment in the wild. In Conference on Com-
puter Vision and Pattern Recognition, 2014. 2

[2] G. Bradski. The opencv library. Doctor Dobbs Journal,
2000. 6

[3] L. Breiman. Random forests. Machine learning, 2001. 3, 4
[4] M. D. Breitenstein, D. Kuettel, T. Weise, L. Van Gool, and

H. Pfister. Real-time face pose estimation from single range
images. In Conference on Computer Vision and Pattern
Recognition, 2008. 2

[5] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-
ance models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2001. 2

[6] M. Dantone, J. Gall, G. Fanelli, and L. Van Gool. Real-time
facial feature detection using conditional regression forests.
In Conference on Computer Vision and Pattern Recognition,
2012. 2

[7] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool.
Random forests for real time 3d face analysis. International
Journal of Computer Vision, 2013. 1, 2, 3, 4, 6, 7, 8

[8] G. Fanelli, J. Gall, and L. Van Gool. Real time head pose
estimation with random regression forests. In Conference on
Computer Vision and Pattern Recognition, 2011. 2

[9] X. Geng and Y. Xia. Head pose estimation based on multi-
variate label distribution. In Conference on Computer Vision
and Pattern Recognition, 2014. 2

[10] M. Kan, S. Shan, H. Chang, and X. Chen. Stacked progres-
sive auto-encoders (spae) for face recognition across poses.
In Conference on Computer Vision and Pattern Recognition,
2014. 2

[11] V. Kazemi and J. Sullivan. One millisecond face alignment
with an ensemble of regression trees. In Conference on Com-
puter Vision and Pattern Recognition, 2014. 2

[12] S. Koterba, S. Baker, I. Matthews, C. Hu, J. Xiao, J. Cohn,
and T. Kanade. Multi-view aam fitting and camera calibra-
tion. In International Conference on Computer Vision, 2005.
2

[13] E. Murphy-Chutorian and M. M. Trivedi. Head pose esti-
mation in computer vision: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2009. 2

[14] C. Redondo-Cabrera, R. Lopez-Sastre, and T. Tuytelaars. All
together now: Simultaneous detection and continuous pose
estimation using a hough forest with probabilistic locally en-
hanced voting. In British Machine Vision Conference, 2014.
1, 2, 3, 6, 7, 8

[15] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof. Hough
networks for head pose estimation and facial feature local-
ization. In British Machine Vision Conference, 2014. 1, 2, 3,
6, 7, 8

[16] R. Sadourny, A. Arakawa, and Y. Mintz. Integration
of the nondivergent barotropic vorticity equation with an
icosahedral-hexagonal grid for the sphere 1. Monthly
Weather Review, 1968. 4

[17] S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and
H. Bischof. Alternating regression forests for object detec-

tion and pose estimation. In International Conference on
Computer Vision, 2013. 1, 2, 3, 6, 7, 8

[18] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifica-
tion. In Conference on Computer Vision and Pattern Recog-
nition, 2014. 2

[19] D. J. Tan and S. Ilic. Multi-forest tracker: A chameleon
in tracking. In Conference on Computer Vision and Pattern
Recognition, 2014. 1, 4, 5

[20] D. J. Tan, F. Tombari, S. Ilic, and N. Navab. A versatile
learning-based 3d temporal tracker: Scalable, robust, online.
In International Conference on Computer Vision, 2015. 1, 4,
5

[21] P. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 2004. 2, 4, 8

