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Abstract

Image interpretation has attracted a-lot of researchers in the area to make the computer
understand what it sees. This problem is relatively easy for the human visual system be-
cause we are able to do this very well but under certain circumstances the problem can
be even difficult for us. One of the key factors is understanding the geometry behind the
image to be able to determine an objects pose and location. A stereoscopy system finds
a planes pose by triangulating a point invariant to projective transformations. Through-
out this thesis using invariance and projections of geometric shapes, a planes pose can be
recovered with a monocular system.
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1. Introduction

As humans we perceive and observe the world around us in three dimensional space eas-
ily, but researches were eager to find a way to develop techniques to recover the three
dimensional space and appearance of an object from imagery, and from there different
mathematical techniques were introduced for corresponding mapping.
The eye can recognize anything under various variation in illumination, viewpoint, ex-
pression..etc. According on how robust your algorithm will be to these kinds of conditions
in less complexity, the better it is.

One of the basic and critical problems in computer vision is the pose estimation problem
which i will provide a possible solution throughout the paper.
To simplify what pose estimation means it is the mapping between the two dimensional
points of an image to its corresponding three dimensional coordinates with respect to the
world system like an objects rotation and translation.
Pose estimation has many applications including gaming, industrial production, human
computer interaction, medical care, security and several others.
Different solutions are introduced till now by the introduction of new mathematical equa-
tions or new software or hardware design such as depth sensors [16], new markers [9], or
a monocular [17] or a stereo setup [7].
Recently machine learning and artificial intelligence methods like [23, 26, 24] were intro-
duced to proceed in a smart way to compute the unknowns required to map between an
image and the world.

1.1. Motivation

There are two ways of setting up your cameras and markers to know their orientation
and position i) Outside-in system where a set of cameras are at static positions to track the
environment in its angle of view or ii) Inside-out system where the camera or a set of cameras
are moving to track static markers in the environment.

Medical imaging systems such as NDI optical stereo tracker [15, 30] use an outside-in sys-
tem to track markers attached on hand-held devices (ultrasound, gamma. . . etc.)(see Fig.
(1.1)), the cost of this setup is often beyond the resources of the typical medical community
and normally the distance between the stereo-system and the markers is huge making it
prone to line of sight interception by the surgeons movement, resulting in lost images and
process repetition.
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1. Introduction

Figure 1.1.: Outside-in stereo tracker

Consequently an inside-out system project is on development, where a camera could be
attached directly to the hand-held device being used giving the surgeon more space for
movement and lowering its hardware cost, this thesis contributes in experimenting a monoc-
ular approach to estimate the camera pose. In the end a decision upon attaching a stereo
or a mono system should be reached.

1.2. The Past

At the early time photogrammetry was done by assigning operators to a pair of images
to find corresponding features by hand then specify the displacements and feed it to the
computer to solve for the position of these points. In 1957, Gilbert Hobrough [18] was the
first one to automate the process of stereo correlation for looking for features.

Following this came Larry Roberts [22] in the 1960’s his idea was matching in a geometric
sense a 3D solid model of an object against its possible projections in the world and so he
was able to extract edges and lines, then based on the relative orientations of these lines,
he was able to configure out their configuration in three dimensional space.
Since then this set foundation and formulation by which model based vision is still carried
out and performing advanced researches in the area.

David Waltz [28] then figured a way from the projection of 3D objects in his case were
polyhedral objects could know their three-dimensional configuration from just a 2D image,
which is an important step of understanding an objects geometry from just a single view
of it.
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1.3. Related Work

In the 1980’s Rodney Brooks created the ACRONYM system [3] which clarified the role
of uncertainty in these geometric analysis, so that small error in camera location or object
location could be taken into account in the recognition process.
Complexity started increasing and computers were pretty slow by then, and so the idea of
parallel processing and parallelism in the computation of geometric constraints was then
identified by Ballard [1] and Feldman [8].

Around 1985 David Lowe [19] and Joseph Mundy [21], made huge impact in hypothesiz-
ing the geometric relationships and testing them on a images. Since then basis of illumi-
nation, geometry of viewing and projections from single to multiple views and converting
them algebraically so they can be computed have been used to develop new unique solu-
tions for pose estimation and model fitting problems.

1.3. Related Work

Problems in computer vision were solved through time some of them are the correspon-
dence, ambiguity, pose-estimation, pattern recognition, background subtraction, efficiency,
and accuracy. This section briefly introduces you to recent methods used to solve most of
these limitations.

1.3.1. Fiducial Markers

Recently marker tracking has been widely used whether they are 2D or 3D. Types of mark-
ers also vary from retro-reflective, simple geometric shapes, natural or fiducial markers.
The fiducial markers are special markers encoded with identification code in someway to
make the distinguishing process of objects easier also the black and white contrast of the
markers make it easier to find in an image, libraries that can be used for marker detection
include ARTag [9], ARToolKit [27] and ArUco [11].

1.3.2. Markerless Tracking

A draw back for the previous method is markers have to be there, so researchers devel-
oped and still develop another approach which is marker-less tracking also known as pho-
togrammetry [12] or natural marker tracking [14] where given a set of images, identical
features can be extracted across the images, then by drawing a ray from the similar fea-
tures, the intersection is the 3D location of the point, this process is also called triangulation
or reconstruction. Across the algorithms each have a different way in selecting the feature
points across various illumination or partial occlusions to ensure distinctive photometric
properties for reliable pose estimation.
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1. Introduction

1.3.3. Stereo Tracking

Moreover changes are not only made on markers but on hardware too, the widely used
stereo-system [6] has proven its accuracy by finding corresponding features in the left
and right images of a scene. Such correspondence match is useful, as for example, in
determining the depth feature.
A significant number of publications improved the stereo-system performance [4]. Ad-
vancement include having different correspondence methods, methods for occlusion, and
real-time implementations. The NDI system [15] is an example of the stereo setup for a
medical environment. The setup and priority of an algorithms compromises change across
diverse fields to match their cause and needs. .

1.3.4. Mono Tracking

Replacing the stereo-system by a monocular one [2] has been on researchers mind for
years. Focus was turned toward methods based on learning of frames [24], back-projecting
geometric shapes and using the invariance theory [20], since they contribute enormously
in image understanding. Geometric shapes with interesting projections and invariance
properties are conics were this thesis and [17] use similar methods for monocular-pose
estimation, an alike stereo-system was also developed in [7].

6



2. Theory

This chapter presents the theoretical background required to reach a deep understanding
of our proposed implementation.
The human eye perceives everything in a perspective view which means the objects ap-
pearance and dimensions differ relative to the position of the eye, but why do they differ.
It is because the eyes are on a plane not parallel to the objects in its field of view. This thesis
revolves around achieving parallelism between the planes to make it possible extracting
an objects pose with respect to the viewer.

2.1. The Camera

The camera works in the same manner as the eye when you change the focal length, dis-
tortion, scaling or angle of view. This is why we have camera calibration techniques to find
the quantities internal to the camera that affect the imaging process and explain the plane
its on, a good camera calibration is important for camera-pose estimation and reconstruct-
ing a world model.
A 3 ∗ 4 matrix transformation is applied to the camera called projection matrix, this matrix
is a composite of camera intrinsic and extrinsic matrices.
Eq (2.1) explains the mathematical operation to project the points from two to three dimen-
sional space where p′ is the projection point in the image, A and [R|T ] are the intrinisc and
extrinsic parameters respectively, and the P ′ is the 3D point in the world space.

p′ = A [R|T ]P ′ (2.1)

Going in more details the intrinsic is a 3 ∗ 3 matrix responsible for linking the pixel co-
ordinates of an image point with the corresponding coordinates in the camera reference
frame. Consequently, the fx and the fy represent the focal length in pixel units since each
camera has a different horizonatal and vertical pixel size, the cx and cy are the principal
point coordinates (see Eq. (2.2)).

A =

fx 0 cx
0 fy cy
0 0 1

 (2.2)

The extrinsic is a 3 ∗ 4 matrix which defines the translation Tvector and rotation Rvector of
the camera with respect to the world frame (see Eq. (2.3)), for deeper understanding of
different camera models you can check it from [13].

[R|T ] =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (2.3)
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2. Theory

2.2. Marker Perception

Reflective markers are lately being used, these markers simply reflect light resulting in an
image that is totally dark with really bright white spots, so it easy to detect the marker
in much less complexity compared with detecting colored markers. In the case of colored
markers, an example will be demonstrated throughout the thesis.

To explain how color detection occurs, the RGB image is converted to HSV (Hue, Satu-
ration, Value), the reason behind changing the color space is, HSV separates the image
intensity from the color information to be more robust to lighting changes, or removing
shadows. By now we can apply a threshold to the image to remove the unwanted colors
and then execute a blob detection method to the interesting regions to link them together.

Our theory starts by using the circles geometric properties to determine the pose. The
camera perceives the circle as an ellipse similar perception is also between the unit square
to a convex quadrilateral due to perspective projection, in most of the cases the two planes
are not parallel. If we extend the lines of projection between Πi (image plane) and Πt (target
plane) backwards a conic is formed with its vertex at the center of projection (see Fig. (2.1)),
a more detailed explanation of how this is formed is if you draw a cone with its base as the
circular marker on the target plane, it will intersect the image plane with a conic section of
an ellipse with a certain angle.
With the conic section as an ellipse, possible rotations can be calculated to convert the el-
lipse into a circle. When this conversion is achieved Πi would be parallel to Πt. A property
was exploited that is unique to a conic that the back-projected section is always a circle,
with this you can use some geometry to relate between the back-projected circle and the
circular marker on Πt resulting in finding a possible normal and translation of the circular
marker which is the desired pose, this property may also be called an invariant descriptor
[20].
An invariant descriptor is a geometric shape that preserves its properties and is unaffected
by object pose or transformations.

Figure 2.1.: Planes behavior [17]
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2.3. Eigen Frame

2.3. Eigen Frame

The eigen values and eigen vectors have an important role in physics and engineering
such as building bridges, studying vibrating systems and when estimating the pose of the
plane, where in our case you need to keep the properties of the original ellipse matrix.
Since when matrices are multiplied by a certain vector they could change direction and
become unrecognizable to its original form. And our ellipse goes from one coordinate
system to another in order to achieve parallelism.
The preserved direction of transformation is called the eigen vector X (see Eq. (2.4)) and
the constant which describes whether the vector is stretched, reversed, or left unchanged
is called the eigen value λ.
Geometric interpretations can be expressed in terms of lambda values as you will see in
Chapter 3 to retrieve the required angles to transform the ellipse to a circle.

AX = λX


a11 a12 · · · a1k
a21 a22 · · · a2k

...
...

. . .
...

ak1 ak2 · · · akk



x1
x2
...
xk

 = λ


x1
x2
...
xk


(2.4)
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3. Implementation

3.1. Overview

A brief description about the method would be as a first step fit the points of the marker
detected to create the desired conic between the ellipse in the camera plane and the cir-
cle on the target plane (see Fig. (2.1)), a rotational transformation to the ellipse should
be applied by then to transform it to a circle, which is achieved when the two-planes are
parallel, with this property extracting a normal of the target plane is possible which ex-
plains its rotational behavior. The rotational transformations could be extracted in terms
of eigen-values and vectors, also this is where the ambiguity is formed. Back-projecting
the center of the constructed circle to the target plane will form geometric relations be-
tween the point and the center of the marker, leading in extracting its normal. By now you
extracted the planes normal and its translation which describe an objects pose with respect
to the camera.
The method goes through several pipelines as expressed in the figure below and my ex-
planation will go through the same sequence.

Figure 3.1.: Processing Pipeline

3.2. Setup

This implementation is carried out in matlab since its mathematical notations are concise,
simple and powerful. Also its easier in matrix-manipulation, doing specialized functions,
and creating plots. Matlab is often slower at execution time, nevertheless it’s compensated
in the debugging time, and having a fast prototype. Another advantage is its documenta-
tion and toolboxes are quick and easy to access, and in the case of our camera calibration
we used the matlab camera calibration toolbox.
Camera intrinsic calibration is required A (see Eq. (2.2)), different methods of calibration
can be used such as [25, 31].
The marker of choice would be a 2D reflective circular maker as its advantages were ex-
plained in Section 2.2. The radius of the markers should be known, also any number of
markers can be used as long as at-least 2 or 3 are non co-planar and visible in the camera
view, this property is important to break the ambiguity as i will explain in the upcoming
pages.

13



3. Implementation

3.3. Ellipse Extraction

After placing the retro-reflective markers and acquiring the image, applying a threshold
can easily distinguish the markers as they will have bright white spots as a result.
Fitting of primitive models to image data is a basic task in pattern recognition, and for the
data acquired we will need to fit ellipses on the borders of each marker detected. Such
method can be done using [10].
After fitting the conic-section in the camera reference frame, the ellipse geometric proper-
ties are extracted such as the centers, major and minor radii, and the angle of rotation with
respect to the created conic (see Fig. (2.1)).

The geometric properties will need to be converted to an algebraic expression in its nor-
malized form (see Eq. (3.1)) then to its matrix form (see Eq. (3.2)). The ellipse equation is
a special case of the conic and based on the x2 and y2 coefficients you can extract radii in-
formation, the x and y explain how the center of the ellipse is transformed from the origin,
and the xy shows the angle of rotation.
Methods from [5] can be used to convert from the geometric to algebraic parameters or the
other way around.

ax2 + 2bxy + cy2 + 2dx+ 2ey + f2 = 0 (3.1)

C =

a b d
b c e
d e f

 (3.2)

3.4. Pose Estimation

As discussed in Section 2.1 to retrieve the pose you need [R|T ], here we will be able to
retrieve the normal vectors of Πt which explains its rotational behavior R around the axes
along with the proper translation vector T . A starting point would be multiplying C with
AT and A from the left and right hand-sides respectively this is needed to reveal the el-
lipses orthnomal basis with respect to the camera frame and adjust the values in C to a
common camera reference scale which is a form of normalization.
By observing Fig. (2.1), the orientation of the marker on plane Πt can be calculated when
the image and the target plane are parallel to each other. To achieve this, two successive
rotations are applied, the first one R1 aligns the X and Y axis on Πi with the axis of Πt

and makes the Z axis go through the center of projection. The second rotation R2 adjusts
the newly found coordinate system X

′
Y

′
Z

′
by rotating it around the Y

′
axis to become

parallel to Πt, this converts the ellipse into a circle in the X
′′
Y

′′
Z

′′
coordinate system.

While calculatingR2 the two fold ambiguity problem arises (see Fig. (4.2)) resulting in two
possible normals ~n1 and ~n2, breaking this ambiguity and choosing the correct normal will
be discussed in Section 3.5.
Retrieving the translation vector for the marker will also be ambiguous till we decide on
the correct normal.

14



3.4. Pose Estimation

The vector is calculated by triangular geometryAOOc (see Fig. (3.2)) so to get the displace-
ment between the center of projection O and the center of the marker Oc in Πt we need to
solve for the distance d and δ (see Fig. (3.2)) an expression in terms of the eigen-values and
the marker radius r is calculated (see Alg. (1)).
By now all you have left is to apply the rotational projection on

(
δ
0
d

)
and you got the

coordinates of the marker center.

Figure 3.2.: Parallel planes behavior [17]

Data: C matrix in camera frame
Result: normals ~n1 and ~n2, translations ~T1 and ~T2

λ1, λ2, λ3 = eigen-values for C;
~e1, ~e2, ~e3 = eigen-vectors for C;
if eigen-values not sorted ascendingly then

sort λ1, λ2, λ3 with respect to ~e1, ~e2, ~e3 ;
end
assuming λ1 < λ2 < λ3 ;
R1 = [~e1, ~e2, ~e3];
calculating ambiguous angle to achieve parallelism ;

θ1,2 = ± tan−1
√

λ2−λ1
λ3−λ2 ;

R2 =
(

cos θ 0 sin θ
0 1 0

- sin θ 0 cos θ

)
;

RC = R1 ·R2;

~n1 and ~n2 = RC ·
(
0
0
1

)
;

d =
√
−λ22
λ1·λ3 · r;

δ =
√
−(λ2−λ1)·(λ3−λ2)

λ1·λ3 ;

~T1 and ~T2 = RC ·
(
δ
0
d

)
;

Algorithm 1: Retrieving ambiguous pose of Πt

15



3. Implementation

3.5. Breaking The Ambiguity

Up till now the mathematical concepts are used from [17], however for breaking the am-
biguity (see Fig. (4.2)) we follow a different approach. A stereoscopic systems suffers
from the ambiguity problem as-well but is solved by comparing features of the image
taken from the two cameras in the same frame, a similar approach could be done using
the mono-system but you will have to compare over a couple of frames and assuming the
camera is always moving. The problem with this approach is it makes you vulnerable that
the movement or difference in the pair of frames may not be sufficient to break the ambi-
guity as well as dropping frames in the middle is not a convenient solution for real time
results.

By observing our setup the markers are static in the scene, which allows a constant relation
between the markers and each other. To break the ambiguity of a markerM1 we assume we
have model information such as the angle between non co-planar markers, and since you
already have the ambiguous normals then calculating the scalar product between a pair
will give you 4 possible solutions, following that a comparison with the model information
is made then vote for the best fit, and so on with another pair M2,M3 . . .Mn with respect
to M1.

Figure 3.3.: Ambiguity formation per marker

Algorithm 2 explains in a high level language the process to break the ambiguity for a
single marker, where M is the specified index of the marker to get its normal, NL1andNL2

are the lists of the two possible normals for all markers.
Data: M , NL1 , NL2

Result: ~n correct normal
for i = 0; i < length(NL1); i← i+ 1 do

if i 6= M then
compute 4 possible scalar products between
NL1(M), NL2(M), NL1(i), NL2(i);
compare with the angle in the model information ;
score voting from a scale of 4 to 1 with 4 to the closest answer ;

end
end
return ~n with the highest votes ;

Algorithm 2: Breaking the ambiguity

16



3.6. Constraints

3.6. Constraints

Calculating the correct ellipse equation is critical since everything is based on it, to convert
from the algebraic form (see Eq. (3.1)) to the geometric form is given by [29]

The centers of the ellipse

x0 =
cd− bf
b2 − ac

y0 =
af − bd
b2 − ac

(3.3)

The semi-axes lengths

a =

√
2(af2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)[sqrt(a− c)2 + 4b2 − (a+ c)]

b =

√
2(af2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)[−sqrt(a− c)2 + 4b2 − (a+ c)]

(3.4)

The angle of rotation

θ =


0 for b = 0 and a < c
1
2π for b = 0 and a > c
1
2 cot−1(a−c2b ) for b 6= 0 and a < c
π
2 + 1

2 cot−1(a−c2b ) for b 6= 0 and a > c

(3.5)

To make sure that Rc corresponds to the correct rotations forming a circle from the ellipse
and result in parallelism between planes, it should be in the following form

C
′′

=

 1 0 −x0
0 1 0
−x0 0 x20 − r20

 (3.6)

Where to get to C
′′

coordinate-frame

C
′

= RT1 · C ·R1

C
′′

= RT2 · C
′ ·R2

(3.7)

Correspondences between Equation 3.8 and 3.6 should be established

x0 =

√
(λ2 − λ1)(λ3 − λ2)

λ22

r0 =

√
−λ3 · λ1
λ22

(3.8)
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4. Testing

Different experiments are carried out throughout the implementation. This chapter an-
alyzes 3 main approaches used for evaluation starting with synthetic, then intuitive and
ending with ground truth comparison. Evaluation is carried out by observing the extracted
pose and movement.

4.1. Synthetic

Synthetic tests is data generation computed by mathematical techniques then feeding it to
your method and evaluating the results with the generated data.
In our case its a prescribed model with a certain trajectory, and by feeding it to our method
you should examine the results by finding a matching movement and model, in this kind
of tests we us an identity matrix in the camera intrinsic parameters to avoid any kind of
noise.

4.1.1. Circles

In this test we examine matching trajectories. The data is formed by defining a homog-
enized circle within a unit square of distance 1. The circle center is at the origin (0, 0, 1)
and so by applying different transformations across different frames (see Table (4.1)), the
detected ~T should change accordingly (see Table (4.2)).

(a) Synthetic Movement of Centers (b) Detected ~T

Figure 4.1.: Comparision between similar trajectories of (a) and (b)
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4. Testing

Frame x y z
1 0 0 1
2 1 1 1
3 2 2 1
4 3 3 1
5 4 4 1
6 5 5 1
7 6 4 1
8 7 3 1
9 8 2 1
10 9 1 1

Table 4.1.: Synthetic Translation

Frame x y z
1 0 0 2
2 1 1 2
3 2 2 2
4 3 3 2
5 4 4 2
6 5 5 2
7 6 4 2
8 7 3 2
9 8 2 2
10 8.9975 1.0232 1.9994

Table 4.2.: Extracted ~T

4.1.2. Ellipses

The unit square is regarded as a convex quadrilateral due to perspective projection. Fur-
thermore a unit circle can be inscribed in a unit square which projects to be an ellipse
inscribed in a quadrilateral. The center of the ellipse can be found by bisecting the four
chords joining the points of tangency of this quadrilateral.

Figure 4.2.: Camera Perspective Projection

20



4.1. Synthetic

In this experiment we use the previous explanation to form 4 circles with the same center
but different radii. Following that we apply a unique rotation to each unit circle which
backfires on their corresponding ellipses. The circles center is at (0, 0, 1) in homogenized
coordinates. From Figure 4.3(a) the outer most 4 points correspond to an ellipse and as you
go closer to the center the other 3 are created. Over a couple frames transformations are
applied to the ellipses resulting in the trajectory in Figure 4.3(b). The cause of this model
is a continuous rotation around the z − axis. The purpose of this experiment is verifying
the correctness of breaking the ambiguity as well as retrieving the correct center.

(a) Starting position of ellipses (b) Trajectory applied

Figure 4.3.: Rotations around the z − axis to achieve trajectory

As far as breaking the ambiguity is concerned, model information is acquired through a
static rotation around the x− axis expressed in the θ column in Table 4.3.
Moreover we translate the centers by the amount in Table 4.3 and look for matching results.

Circle x y z θ

1 0 0 2 -10
2 0 0 3 0
3 0 0 4 10
4 0 0 5 20

Table 4.3.: Center Transformation

Circle x y z
1 -0.0018 0.1031 2.9982
2 0 0 4
3 0 0 5
4 0 0 6

Table 4.4.: Extracted ~T

While breaking the ambiguity (see Sec. (3.5)) 4 possible solutions arise between each pair
of markers, consequently by looking at the θ column in table 4.3, retrieving the relation
between the pair is viable by finding the difference between the angles and comparing it
with the extracted solutions.
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4. Testing

For the sake of this test we observe the behavior of the resulting angles between the pair
1 and 2, which has a relation of 10◦. Data is collected over an interval of 5 frames, and the
following histograms are formed

(a) Frames 0-5 (b) Frames 5-10

Figure 4.4.: Recording possible angles across frames

From Figure 4.4(a), you can notice that a certain combination has a consistent result for
the correct angle which is 10◦, and based on that you can break the ambiguity without
referring to model information.
Nevertheless movement between certain frames are sometimes insufficient to break the
ambiguity. By observing the results in Figure 4.4(b), two possible peaks are spotted, this is
where previous model information comes in handy to detect the true normal.
In our implementation we break the ambiguity each single frame by keeping a score of the
voted normal between a marker and its permutations with the others.

4.2. Intuitive

Synthetic data were highly successful, which encouraged to have a working demo where
you could intuitively decide if the data collected is right or wrong. This demo is a RGB
blob detector (see Sec. (2.2)), where you can take the borders of the blob and fit them to be
an ellipse, then continue the computations to extract the ~T .
On the other hand ~n cannot be decided since we do not know how the markers are related
to each other, so we used a non co-planar setup for simplicity.
In this experiment we used a calibrated webcam to detect 3 markers red, green, and blue,
then plot their results accordingly.
Accuracy and precision cannot be measured since having the ground truth of points is
absent.

22



4.3. Stereo Comparison

Deciding intuitively is based on moving the markers on a specific pattern and checking if
the graph changes accordingly. In our case we tried a square pattern (see Fig. (4.5)), the
graph describes the detected ~T of the centers of the marker.

Figure 4.5.: Square pattern by RGB detector

Another possible evaluation can be calculating the deviation of the distance between a pair
of markers, since the markers move together with the the same transformation then the
distance between them is rigid. In a best case scenario the deviation should be a zero. The
measured deviation in Table 4.5 is between the red and the greenmarkers over 150frames.

x y z
0.2502 0.1538 1.1736

Table 4.5.: Standard Deviation of RGB Detector

4.3. Stereo Comparison

In the third stage of testing, ground truth data is gathered from a stereo-system which
is sub-millimeter accurate. The red trajectory in Figure 4.6 represent the marker-motion
detected by the stereo-system. The points plotted are the detected ~T of the marker centers.

Our system takes as input from the stereo-system the camera intrinsics as well as proper-
ties of the detected ellipses such as the centers in pixel coordinates, major and minor radii,
and the angle of rotation, then preforms its computation and plots the extracted ~T as the
blue trajectory.
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4. Testing

(a) 3 Marker Dataset (b) 8 Marker Dataset

Figure 4.6.: Monocular result compared with stereo-system

Our theory and logic in extracting the pose is for sure correct, nevertheless this test ex-
ploited a missing translation in our implementation since the two graphs did not com-
pletely overlap, however same motion and trajectory is detected.
A possible explanation for this shift is the axes are not accurately aligned with the target
plane, resulting in a shift in all values. Another theory would be with the introduction of
camera intrinsics, the distortion factor should be taken into consideration when calculating
~T .
Standard deviation can still be calculated between a pair of markers throughout continu-
ous movement as the distance between them is always fixed.

x y z
0.1502 0.1438 0.6396

Table 4.6.: Standard Deviation between a pair of markers
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5. Conclusion & Future Work

The purpose of this thesis was experimenting a monocular approach on static non coplanar
circular markers to estimate their pose. The math techniques to do this were used before
but we proposed a new way to break the ambiguity by voting for the proper normals with
respect to the given model. This model is based on the relations between the non-coplanar
markers.

Synthetic tests conducted that the method extracts correct normals after going through the
voting system, as well as correct translation.
Trajectories are extracted correctly while comparing our approach with the stereo-system
nevertheless drawbacks arose with the introduction of camera intrinsics, where a non jus-
tified translation is missing for the graphs to overlap (see Fig. (4.6)).

Future improvements include model learning from frames, where instead of knowing
ahead how the markers are aligned, an algorithm could observe the first couple of frames
to decide on a possible relation between them (see Fig. (4.4(a))). However this requires the
camera to be in continuous movement or the voting would be in close proximity to each
other resulting in choosing the wrong relation.

Moreover identifying the markers in the RGB test was easy, but for the stereo-system we
take as input a text file with the detected markers over a couple of frames. We assign the
first frame as reference for marker ordering. The assumption is marker information will
come in the same order in all upcoming frames ignoring possible permutation of the data.
A solution to that is to provide a prediction margin, if the marker lays in the next frame
within this margin then its the same marker, if not possible exclusion from the voting
system could me made since permutation could have happened which might mess up
your defined model. This a promising solution for a continuous smooth movement, yet
defects occur if exposed to sudden movement.
Finally, conversion of the code frommatlab to C++would be convenient since computer vi-
sion libraries are widely available in that language, which may allow researchers develop
the method more or add innovative ideas to it.
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