Project Management and Software Development for Medical Applications - WS 15

Visualizing the Volumetric Accuracy of Medical Tracking Solutions

January 28, 2016

Final Presentation

Stefan Matl matl@in.tum.de

Supervisor: Benjamin Busam Project Partner: FRAMOS

Outline

- Project Outline
 - Motivation & Problem Statement
 - Requirements & Specifications
 - Scoping & Planning
- Software Design
 - Software Architecture & Design Patterns
- Project Results
 - Demo
- Project Outlook
- Project Retrospective

Project Outline

- Motivation
 - Position and orientation information in real-time

10

8

-6

-5

N 0 -2 -4

- Different systems
- Spatial accuracy often unknown
- Problem Statement
 - Visualizing the volumetric accuracy
 - Interactive GUI

Figures of US probe and tracking setup kindly provided by FRAMOS GmbH

Project Outline

- Requirements & Specifications
 - Different visualizations
 - Show live tracking error and poses (FRAMOS Optical Tracking System^[1])
 - Additional reference points or medical devices
 - Camera calibration^[2]
 - GUI
 - Interactive, real-time
 - Input
 - Pose & accuracy via TCP / IP
 - Output
 - Rendering
 - Environment
 - Windows, Visual Studio, C++, OpenGL, OpenIGTLink, GitLab, OpenCV

FRAMOS OTS, <u>https://www.framos.com/fileadmin/media/pdf/news/2015/FRAMOS_OTS/framos-ots_flyer_engl.pdf</u> (November 1, 2015)
Zhang, Zhengyou. "A flexible new technique for camera calibration." *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 22.11 (2000): 1330-1334.

Project Outline

• Scoping and Planning - Original Project Plan

Software Design UML Use Case Diagram

Software Design UML Sequence Diagram

Software Design UML Sequence Diagram

Software Design UML Class Diagram

Software Design

- Strategies
 - GUI / rendering: bottom-up implementation
 - Server-Client: top-down
- Server-Client Communication
 - OpenIGTLink protocol, using Position Message / Image Message
- Separate threads (server, calibration, GUI)
- Design Patterns
 - Creational patterns: RAII
 - Concurrency patterns: Monitor Object (for server)

Project Results

- Questions
 - How useful is old data ?
 - Postprocessing
 - What if paths cross ?
 - Show latest data
- Approach
 - Show *recent* positions
 - Use *color* for accuracy
 - Use *size* for accuracy
 - Show reference frame
 - Show additional *devices*
 - Let measurements *fade out*
 - Show *checkerboards*
 - Show *reprojection error*

Project Results - Demo - Poses

Project Results - Demo - Checkerboards

Project Results - Demo

Project Results - Demo - Combination

Project Outlook

- Completed Tasks and Subtasks
 - Six different visualizations
 - Displaying reference frame
 - Displaying US probe mesh
 - Navigation (mouse, keyboard)
 - Server implementation
 - OpenIGTLink integration
 - Customization of visualization (color, size, legend)
 - Calibration (Mono and Stereo) with OpenCV on 38 image pairs (10 rejected)
 - Visualization of checkerboards (8 x 7 test board)
 - Visualization of reprojection error per corner and board (0.29 ~ 0.75 px)
 - Connection with FRAMOS framework

(directional communication via OpenIGTLink packages)

Project Outlook

- Possible Future Work
 - Advanced error measurements
 - More tests / evaluation
 - Heatmap for postprocessing
 - Include partial checkerboards
 - Suggest next position for checkerboard

Project Retrospective

- Main challenges
 - Integration of OpenIGTLink (reason: library)
 - Calibration with OpenCV (reason: documentation)
- Tasks: all mandatory tasks are done
- Stereo calibration / reconstruction
- PMSD presentations provided interesting insight into typical topics

• Questions

• Comments

• Ideas

Computer Aided Medical Procedures