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1. Introduction and Motivation

What the authors propose:!
 
A single, multi-scale, generic CNN for!

• Depth Prediction from monocular images!
• Surface Normals Prediction from  

monocular images!
• Semantic Labeling of RGB-D (and also RGB) data!
!

Which!
• requires only tiny modifications!
• operates in realtime  

(30hz on a GPU)!
• set the state-of-the-art  

in all of the above  
disciplines
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Multi-scale CNN
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1. Introduction and Motivation

Why inferring 3D scene information on single RGB data:!
!

• many low cost sensors available!
• generate a prior for other algorithms!
• e.g. Human Pose Estimation, Robot Navigation, 3D Scene Reconstruction, 

Defocusing, Scene Understanding!
!

  !
  Medical Example  
  Depth Prediction in  
  X-ray images
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Depth?Xray

Source: [10]
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2. Related Work
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3. Contribution 
  - Architecture
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Scale 1:!

• extract features from the 
entire image!

• obtain 19x14x64 feature map!
Scale 2:!

• mid-level predictions!
• concat feature maps from 

scale 1 with scale 2 
convolution+pooling output!

• do more convolutions!
Scale 3:!

• similar to scale 2!
• but even finer stride for 

convolution+pooling!

320x240

74x55xC

64 feature 
maps à 
19x14

147x109xC

1/16

1/4

1/2
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3. Contribution - Predicting Depth
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Goal: Predict absolute depth at each pixel!
!
!
!
!
!
!
!
!
!
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3. Contribution - Predicting Depth

Loss Function:!
!
!
!
!
!
!
!
!
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2nd-Order!
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Scale Consistency
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3. Contribution - Predicting Surface Normals
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Goal: Predict x,y,z components of the surface normal vector at each pixel!
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3. Contribution - Predicting Surface Normals
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Loss Function: Dot product of predicted and ground truth normal!
!
!
!
Modification: !

• #Channels = 3

Lnormals(N,N∗) = −

1

n

∑

i

Ni ·N
∗

i = −

1

n
N ·N∗

74x55xC

147x109xC
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3. Contribution - Predicting Semantic Labels in RGB-D data
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Goal: Predict class label at each pixel!
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3. Contribution - Predicting Semantic Labels in RGB-D data
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Loss Function: Cross-entropy loss!
!
!
!
!
Modification: !

• #Channels = #Classes!
• Scale 2 and 3: !

• Use RGB, Depth and computed Normals as input!
• Enforce Independence of input types: 

Convolve each input type separately with a different set of 32x9x9 filters!
• Concat resulting 3 feature sets with up sampled output from previous  

scale network 

Lsemantic(C,C
∗) = −

1

n

∑

i

C∗

i
log(Ci)

Ci =
exp(zi)∑
c exp(zi,c)
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3. Contribution - Training

December 10, 2015 13

Data:!
• NYUDepth v2[2] & SiftFlow datasets[3]!
• Standard augmentation: random scaling, translation, flips etc…!

Init:!
• ImageNet trained weights for convolutional layers of scale 1!
• random weights for fully connected layers and all layers of the other scales!

Phase 1:!
• Attach Loss-function to Scale 2 (Scale 1 simply yields feature maps)!
• Jointly train Scale 1 and 2 on 5M samples!

Phase 2: !
• Fix params of Scale 1 and 2!
• Attach Loss-function to Scale 3!
• Train weights of Scale 3 also on 5M samples
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3. Contribution - Experiments & Performance Comparison

Depth prediction on NYUDepth v2 [2]
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Metric Karsch[4] Baig[5] EigenDepth[6] This

RMSE 1.2 1.0 0.877 0.753

Metric Ladickey[7] Fouhey 1[8] Fouhey 2[9] This

Mean Angle Distance 32.5 34.2 35.1 23.1

Median Angle Distance 22.3 30.0 19.2 15.1

% Within 11.25° Degrees 27.4 18.5 37.6 39.4

Surface Normal prediction on NYUDepth v2

Less is better

Less is better

More is better

Less is better

Comparing to ground truth generated as described by Fouhey 1’s 
method
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3. Contribution - Experiments & Performance Comparison

 Semantic Labeling on NYUDepth v2 (4, 13 and 40 classes)
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Metric Farabet 1[15] Farabet 2[15] Tighe[16] This 1 This 2

Pixel Accuracy 78.5 74.2 78.6 84.0 81.6

Per-Class Accuracy 29.6 46.0 39.2 42.0 48.2

Semantic Labeling on the SiftFlow Dataset (33 classes) [3]

Metric!
Pixel Accuracy

Couprie[11] Khan[12] Gupta 13[13] Gupta 14[14] This

4 classes 64.5 69.2 78.0 - 80.6

13 classes 52.4 58.3 - - 70.5

40 classes - - 59.1 60.3 62.9

More is better

More is better

*This 2: class balanced model, This 1: regular class distribution model

More is better

More is better

More is better
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Examples
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3. Contribution - Experiments & Performance Comparison
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Contribution of scales:!
• progressive improvements if scales are added!
• largest single contribution:!

• depth and normals: Scale 1!
• semantic labels: Scale 2 (because of depth & normals input)!

!
Importance of depth and normals for semantic labeling!

• Scale 2 with RGB only: baseline!
• Scale 1+2 with RGB only: +!
• Scale 2 with RGB + predicted depth/normals: +!
• Scale 1+2 with RGB + predicted depth/normals: +!
• Scale 2 with RGB + ground truth depth/normals: ++++!
• Scale 1+2 with RGB + ground truth depth/normals: +++++
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4. ICCV 2015

Eigen and Fergus submit refined work to ICCV 2015 [18]!
!
Changes: !

!
• Further improvement: 15% gain in depth prediction!
• Increased receptive field size of the scale 1 CNN!
• Initialized weights of convolutional layers from VGG-Net[17]!
• Also evaluated on the Pascal VOC[18] dataset!
• Combined Depth and Normals: Share Scale 1 (x1.6 speed-up)
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5. Conclusion

A single, multi-scale, generic CNN architecture which!
• sets the state-of-the-art in 3 different tasks!
• probably suited for other tasks as well!
• realtime (30Hz) on a GPU!!
• requires no pre- or post processing (no segmentation!)!
• End-to-end training and prediction!
!

Future work!
• Use sparsely labeled data for faster training!
• Could also be applied to other tasks such as instance labeling!
• I believe it could be applied to depth prediction on X-ray images
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Thanks for your attention!!
!

Any Questions?
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Appendix: Depth Prediction Loss Function

Formulation in the NIPS (two-scale architecture) paper!
! ! !
!
!
!

leads to (my calculus):!
!
!
!
!
leads to (their calculus):
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Appendix: Cross Entropy

Cross Entropy!
!

• Consider the Mean Squared Error:!
• Minimizing the MSE is the MLE of a (multivariate) normal distribution!
• But is the output of the Softmax activation normally distributed?!
• Probably not! Look at those exponentials everywhere!!
• Cross Entropy is a better choice for sigmoid activations!!
• It introduces no learning slowdown!!

! !
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Gradient of a sigmoid vanishes!
near 1 or 0 —> Slow learning!!
!
Using Cross-Entropy, this is not !
the case
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Appendix: Training - Phase 2 Remarks

At Scale 3:!
!

• don’t train on entire images as it is computationally heavy!!
• instead, use random crops of size 74x55 of up sampled scale 2 output 

concatenated with actual scale 3 input!
• x3 speed-up!
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Appendix: Jaccard Index, Frequency-Weighted Average Jaccard Index

• Measure overlap between predictions and ground truth:!
!
!
!
!
!

! Example: label predictions = {chair, bed, sofa}, ground truth = {chair, !
! !    bed, sofa, tv}!
!
!
!

• Frequency Weighted: Average of the Jaccard-index of each class, where 
each index contributes to the average by the amount of pixels it comprises 
relative to all pixels! !
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J(predictions, ground truth) =
|predictions ∩ ground truth|

|predictions ∪ ground truth|


