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1. Introduction and Motivation ¥

What the authors propose:

A single, multi-scale, generic CNN for
+ Depth Prediction from monocular images

« Surface Normals Prediction from
monocular images

- Semantic Labeling of RGB-D (and also RGB) data Multi-scale CNN
Which J
* requires only tiny modifications /
« operates in realtime f
(30hz on a GPU) Depth Normals Labels

- set the state-of-the-art l

in all of the above
disciplines l
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1. Introduction and Motivation

Why inferring 3D scene information on single RGB data:

« many low cost sensors available
« generate a prior for other algorithms

+ e.g. Human Pose Estimation, Robot Navigation, 3D Scene Reconstruction,
Defocusing, Scene Understanding

Medical Example
Depth Prediction in
X-ray images
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2. Related Work

Hoiem et al. Saxenaetal. ¢ Karschetal. ¢ Baigetal. ¢ Ladickey etal. ¢ Eigen et al.
Photo Pop-up Make3D Non-parametric | Im2Depth | Canonical Depth | Multi-scale
Sampling CNN

Hoiem et al. ¢ Stellaetal. ¢ Xiao etal. ¢ Fouhey et al. ¢ Ladickey et al.
Enhanced Depth-ordered | 3D Cuboids Learned 3D Local Coding

Photo Pop-up | Planes Primitives

SURFACE
NORMALS

THE PAPER
by Eigen et al.
2014

Silberman et al. ¢ Couprie et al. Guptaetal. ¢ Khan etal.
Structural Class and CNN + special Hermans et al.
Support Relation Multi-scale depth encoding | Miiller et al.
Inference

CNN Wang et al.

®
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Input

3. Contribution ' 320x240 Scale 1

- Architecture I - o4 feclure
| & i Bl ox14

conv/pool  full conn.
I upsample

Scale 1:

« extract features from the

entire image conce: .
g convolutions "1 74x55xC

- obtain 19x14x64 feature map | conv/pool | upsample

Scale 2:

- mid-level predictions

- concat feature maps from Loy

scale 1 with scale 2 concat e 12 -

. . convolutions
convolution+pooling output conv/pool

« do more convolutions

Scale 3:

* similar to scale 2

« but even finer stride for
convolution+pooling

Scale 2

Scale 3
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3. Contribution - Predicting Depth

Goal: Predict absolute depth at each pixel
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3. Contribution - Predicting Depth

Loss Function:

D = log(predicted depth map)
D* = log(groundtruth depth map)
predicted depth map

d=D—D"=1
OQ(groundtruth depth map

Lieptn(D, D*) = Zd2 2%12(2 d;)* +£Z[(dei)2+(vydi)2]

O
/ 2n2 Zz 3 2 Zz;éj d; d \
[2-Error Vol LN Spatial Consistency
2nd-Order Scale Consistency
12
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3. Contribution - Predicting Surface Normals

Goal: Predict x,y,z components of the surface normal vector at each pixel
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3. Contribution - Predicting Surface Normals

Loss Function: Dot product of predicted and ground truth normal

1 1
Lnormals(NaN*) :__ZN’LN* =——N_ -N°

n — n
)
Modification: Input
: Scale 1
« #Channels = 3 I i -
conv/pool  full conn. i
:upsamplc
................................ ;
y Scale 2
concat L i — I |
conv/oool g convolutions 7} 74x55xC
P | upsample
o e e e e o e e e e e o e e e e e e e e H
i
| Scale 3
I P
I
.
=~ concat ] " 77147x109xC
conv/pool convolutions i
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3. Contribution - Predicting Semantic Labels in RGB-D data

Goal: Predict class label at each pixel
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3. Contribution - Predicting Semantic Labels in RGB-D data

Loss Function: Cross-entropy loss

1
Lsemantic(ca C*) — _E Z Cz'* log(oz)

O exp(z;)
=
Modification: zc eXp(Zi,c)

« #Channels = #Classes
- Scale 2 and 3:
- Use RGB, Depth and computed Normals as input

- Enforce Independence of input types:
Convolve each input type separately with a different set of 32x9x9 filters

- Concat resulting 3 feature sets with up sampled output from previous
scale network
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3. Contribution - Training

Data:
« NYUDepth v2p2; & SiftFlow datasetsis
- Standard augmentation: random scaling, translation, flips etc...
Init:
- ImageNet trained weights for convolutional layers of scale 1
« random weights for fully connected layers and all layers of the other scales
Phase 1:
- Attach Loss-function to Scale 2 (Scale 1 simply yields feature maps)
- Jointly train Scale 1 and 2 on 5M samples
Phase 2:
* Fix params of Scale 1 and 2
« Attach Loss-function to Scale 3
- Train weights of Scale 3 also on 5M samples
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3. Contribution - Experiments & Performance Comparison

Depth prediction on NYUDepth v2 |2

RMSE 0.877 0.753 Less is better

Surface Normal prediction on NYUDepth v2

Metric Ladickey(71 | Fouhey 1[s] | Fouhey 2[9]

Mean Angle Distance 32.5 34.2 35.1 23.1 Less is better
Median Angle Distance 22.3 30.0 19.2 15.1 Less is better
% Within 11.25° Degrees 27.4 18.5 37.6 39.4 More is better

Comparing to ground truth generated as described by Fouhey 1’s
method
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3. Contribution - Experiments & Performance Comparison

Semantic Labeling on NYUDepth v2 (4, 13 and 40 classes)

Metric Couprie[11] Gupta 131131 | Gupta 14[14] | This
Pixel Accuracy

4 classes 64.5 69.2 80.6 More is better
13 classes 52.4 58.3 - - 70.5 More is better
40 classes - - 59.1 60.3 62.9 More is better

Semantic Labeling on the SiftFlow Dataset (33 classes) (3]

Metric Farabet 1[15] | Farabet 2[15]

Pixel Accuracy 78.5 74.2 78.6 84.0 816 More is better
Per-Class Accuracy 29.6 46.0 39.2 42.0 48.2 More is better

*This 2: class balanced model, This 1: regular class distribution model
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Examples
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3. Contribution - Experiments & Performance Comparison

Contribution of scales:
* progressive improvements if scales are added
- largest single contribution:
+ depth and normals: Scale 1
- semantic labels: Scale 2 (because of depth & normals input)

Importance of depth and normals for semantic labeling
« Scale 2 with RGB only: baseline
« Scale 1+2 with RGB only: +
<: - Scale 2 with RGB + predicted depth/normals: +
- Scale 1+2 with RGB + predicted depth/normals: +
« Scale 2 with RGB + ground truth depth/normals: ++++
« Scale 1+2 with RGB + ground truth depth/normals: +++++
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4. I1CCV 2015

Eigen and Fergus submit refined work to ICCV 2015 [18]

Changes:

 Further improvement: 15% gain in depth prediction

* Increased receptive field size of the scale 1 CNN

- Initialized weights of convolutional layers from VGG-Net;i7)

- Also evaluated on the Pascal VOCi1s dataset

- Combined Depth and Normals: Share Scale 1 (x1.6 speed-up)
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5. Conclusion

A single, multi-scale, generic CNN architecture which
- sets the state-of-the-art in 3 different tasks
- probably suited for other tasks as well \ﬁ"
- realtime (30Hz) on a GPU! |
* requires no pre- or post processing (no segmentation!)
« End-to-end training and prediction

Future work
« Use sparsely labeled data for faster training
« Could also be applied to other tasks such as instance labeling
- | believe it could be applied to depth prediction on X-ray images
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Thanks for your attention!

Any Questions?

(@)
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Appendix: Depth Prediction Loss Function

Formulation in the NIPS (two-scale architecture) paper
Average

1 1 «— Depth Error
Ldepth(D7 D*) — 2— Z[dz - Z(dl)]

n n

leads to (my calculus):
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Appendix: Cross Entropy

Cross Entropy

Consider the Mean Squared Error:

Minimizing the MSE is the MLE of a (multivariate) normal distribution
But is the output of the Softmax activation normally distributed?
Probably not! Look at those exponentials everywhere!

Cross Entropy is a better choice for sigmoid activations!

It introduces no learning slowdown!

1 « Gradient of a sigmoid vanishes
near 1 or 0 —> Slow learning!

0.5 Using Cross-Entropy, this is not
the case
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Appendix: Training - Phase 2 Remarks

At Scale 3:

 don’t train on entire images as it is computationally heavy

* instead, use random crops of size 74x55 of up sampled scale 2 output
concatenated with actual scale 3 input

+ X3 speed-up!
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Appendix: Jaccard Index, Frequency-Weighted Average Jaccard Index

- Measure overlap between predictions and ground truth:

Ipredictions N ground truth|

J(predictions, ground truth) = Ipredictions U ground truth|

Example: label predictions = {chair, bed, sofa}, ground truth = {chair,
bed, sofa, tv}

]:‘ 5\
J(...) =

SN

* Frequency Weighted: Average of the Jaccard-index of each class, where
each index contributes to the average by the amount of pixels it comprises
relative to all pixels
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