ICCV. Santiago, Chile. Dec. 12 ACVR @ 2015

Benjamin Busam, Marco Esposito, Simon Che'Rose, Nassir Navab, Benjamin Frisch A Stereo Vision Approach for Cooperative Robotic Movement Therapy

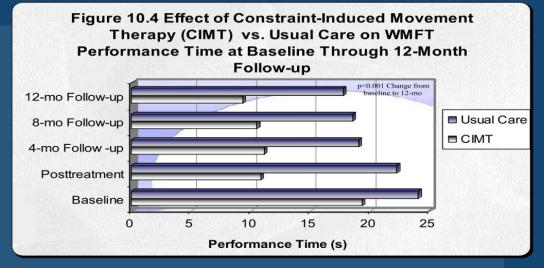
Medical Motivation

Movement Therapy after Stroke

- Poor blood flow in brain
- Cell damage
- ~17 Mio incidents p.a.
- 33 Mio affected patients
- 80% hemiparesis
- Rehabilitation therapy

[1] K. A. Leber. Neurochirurgie Graz. 2015-11-12[2] L. Monfils. Dutch Radiology. 2008

B. Busam et al. Stereo Vision for Robotic Movement Therapy


[1]

Movement Therapy after Stroke

Therapeutic Measures

- Neurological therapeutics
- Constraint-induced movement
- Mirror therapy
- Repetitive practice
- Re-education of movements
 - Motion training
 - Immediate & long term

Patient participation very important [2]

[1] N. Foley et al. EBRSR. 2013 [2] A. A. Blank et al. Current Physical medicine and rehabilitation reports. 2014

B. Busam et al. Stereo Vision for Robotic Movement Therapy

December 12, 2015 Slide 3

[1]

Assistive Movement Therapy

Motion Training

- Previous Systems
 - Joystick controlled
 - Exoskeletons

Our Approach

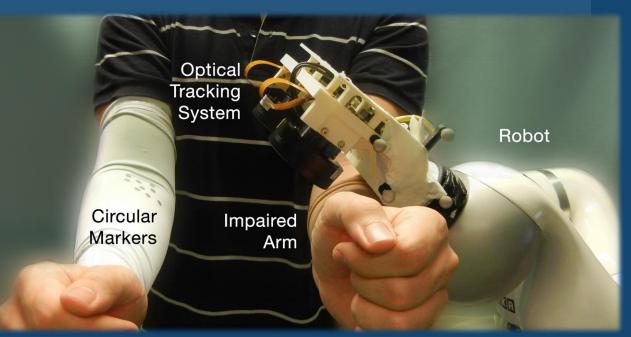
- Contactless with computer vision
- Optical tracking controlled
- Collaborative robot movement therapy

[1] L. Marchal-Crespo et al. JNER. 2009[2] Reha-Stim. Bi-Manu-Track. 2015-11-12

B. Busam et al. Stereo Vision for Robotic Movement Therapy

Bi-Manu Track

[2]



T-WREX Exoskeleton

Assistive Movement Therapy

Proposed Treatment

- Camera-in-hand
- Sleeve markers
- Guiding arm
- Robot supports deficient arm
- Robot follows
- Intuitive control
 of robot movement

B. Busam et al. Stereo Vision for Robotic Movement Therapy

Hardware

Vision & Robotics

- Stereo camera setup
- Direct LED ring illumination
- Infrared filters
- Passive markers
 - Self-adhesive
 - Retro reflective
- Light-weight robotic arm

infrared flash

Inside-out Tracking

marked object

0

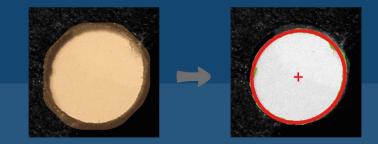
B. Busam et al. Stereo Vision for Robotic Movement Therapy

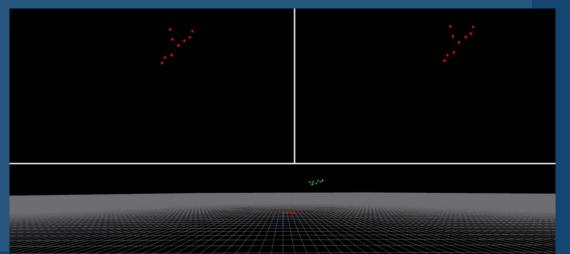
Image Processing

2D/3D Object Recognition

- 1. Acquire images
- 2. Find object markers (ROIs) [1]
- 3. Subpixel precise contour fitting [2]
- 4. Compute centres

stereo rig


5. Triangulate 3D points


[1] Lindeberg. CVPR 1996
 [2] O'Leary, Zsombor-Murray. JEI. 2004

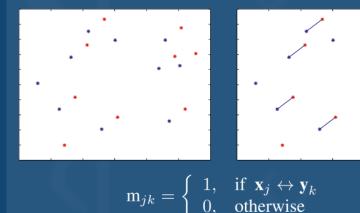
B. Busam et al. Stereo Vision for Robotic Movement Therapy

10

Sparse Point Cloud Registration

 $X = \left\{ \mathbf{x}_j \in \mathbb{R}^3 \mid 1 \le j \le J \right\}$

B. Busam et al. Stereo Vision for Robotic Movement Therapy


 $Y = \left\{ \mathbf{y}_k \in \mathbb{R}^3 \mid 1 \le k \le K \right\}$

Tracking Algorithm

3D Pose Estimation

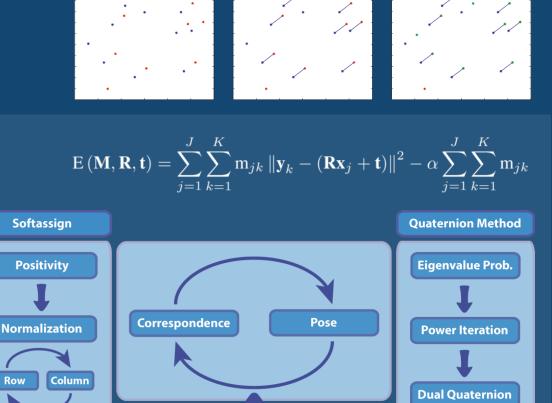
- Arbitrary motion = 6 DOFs
- Minimize energy functional
 - Individual marker set-up
 - Robust recognition

 $\mathbf{m}_{jk} = \langle$

$$E(\mathbf{M}, \mathbf{R}, \mathbf{t}) = \sum_{j=1}^{J} \sum_{k=1}^{K} m_{jk} \|\mathbf{y}_{k} - (\mathbf{R}\mathbf{x}_{j} + \mathbf{t})\|^{2} - \alpha \sum_{j=1}^{J} \sum_{k=1}^{K} m_{jk}$$

Constraints

$$\sum_{k} m_{jk} \leq 1 \quad \forall j \in \{1, 2, \dots, J\}$$
$$\sum_{j} m_{jk} \leq 1 \quad \forall k \in \{1, 2, \dots, K\}$$
$$m_{jk} \in \{0, 1\} \quad \forall j \in \{1, 2, \dots, J\}, k \in \{1, 2, \dots, K\}$$


B. Busam et al. Stereo Vision for Robotic Movement Therapy

Tracking Algorithm

3D Pose Estimation

- Arbitrary motion = 6 DOFs
- Minimize energy functional
 - Individual marker set-up
 - Robust recognition
 - Real-time tracking
 - Online teaching
- Mutual approximation in each frame pair

 $ar{\mathbf{M}}\left(eta
ight) \stackrel{eta
ightarrow\infty}{\longrightarrow} \mathbf{M}$

β †

 ∂E

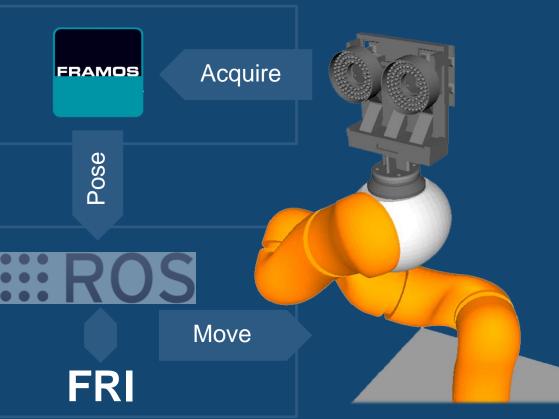
∂pose

B. Busam et al. Stereo Vision for Robotic Movement Therapy

 ∂E

 $\partial \mathbf{m}_{ik}$

Processing Pipeline

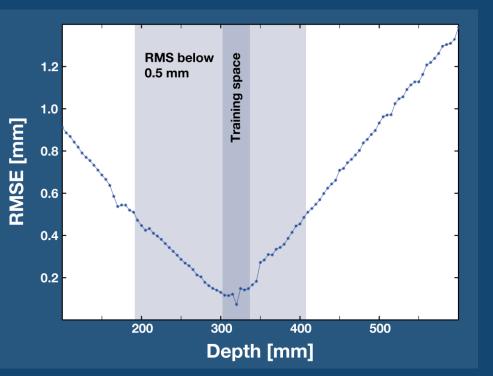

Involved Parts

Calibration

- Camera Intrinsics + Stereo
- Hand-eye calibration [1]
- Communication
 - OpenIGTLink [2]
- Robot Path Planning
 - RRT-connect [3]

[1] Tsai, Lenz. TRA. 1989
 [2] Tokuda et al. MRCAS 2009
 [3] Kuffner. ICRA 2000

Experiment 1


System Validation

Quantitative Validation

Accuracy and Robustness

- Accuracy in working volume
 - Move robot in 60 x 60 x 40 mm³
 - Total translation error 0.5 mm
- Tracking error
 - Move target to different distances
- Partial occlusion
 - Qualitative experiments
 - Tracking with up to 50% occlusion

B. Busam et al. Stereo Vision for Robotic Movement Therapy

Experiment 2

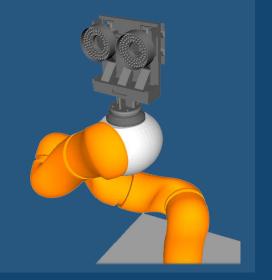
Latency Tests

Conclusion and Discussion

Results and Outlook

Camera-in-hand tracking solution

- Generic marker-based algorithm
- Robust and real-time


Collaborative robotics for rehabilitation

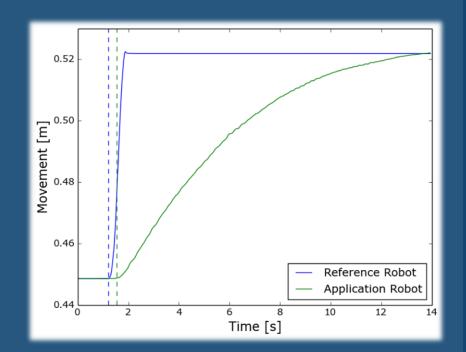
- First concept demonstrator using inside-out tracking
- Very simple movements

Feasibility and evaluation

- Tests with healthy individuals
- Intuitive control mechanism

B. Busam et al. Stereo Vision for Robotic Movement Therapy

Questions ?


FRAMOS

Software Parts and Libraries

- Vision
 - FRAMOS Application Framework (FRAMOS Imaging Systems, Germany)
- Robot
 - Control: Fast Research Interface (KUKA, Germany) and ROS framework
 - Pose monitoring: TF library
 - Path planning and self-collision avoidance: Movelt!, OMPL, RRT-Connect
- Calibration
 - Camera calibration: MATLAB Calibration Toolbox
 - Hand-eye calibration: ViSP library (Tsai-Lenz algorithm)
- Communication
 - TCP/IP: OpenIGTLink API

Latency Tests

- 1st light-weight robot
 - Observes movement of target
- 2nd light-weight robot
 Holds target: 10 markers
- Outside-in tracking system
 - Co-calibration
 - Observe movement

B. Busam et al. Stereo Vision for Robotic Movement Therapy

$$\mathbf{E}(\mathbf{M}, \mathbf{R}, \mathbf{t}) = \sum_{j=1}^{J} \sum_{k=1}^{K} \mathbf{m}_{jk} \left\| \mathbf{y}_{k} - (\mathbf{R}\mathbf{x}_{j} + \mathbf{t}) \right\|^{2} - \alpha \sum_{j=1}^{J} \sum_{k=1}^{K} \mathbf{m}_{jk}$$

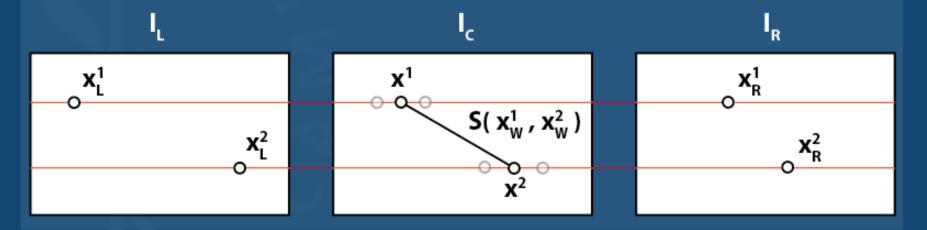
Parameter Initialization and Updates

- Initialize
 - M, R, t
 - $\mathbf{R}_0 = \mathbb{1}$, \mathbf{t}_0 centre of mass
 - $\mathbf{R}_0, \mathbf{t}_0$ from previous frame
 - $(\mathbf{M}_0)_{jk} = 1 + \varepsilon$
- Confidence loop: $\beta = \beta \beta_{inc}$
 - $\quad \text{Convergence loop for } R,t$
 - Softassign: Update M
 - Partial derivatives and positivity
 - 2D Normalization [1]
 - Pose update: R, t
 - Dual quaternion pair

- Parameters

$$\beta_0 = 10^{-4}$$

 $\beta_{inc} = 1.053$
 $\beta_{max} = 10^3$


[1] Sinkhorn. Annals of Mathematical Statistics. 1964

B. Busam et al. Stereo Vision for Robotic Movement Therapy

Stereo Triangulation

Disparity gradient

$$\Gamma\left(\mathbf{x}_{W}^{1}, \mathbf{x}_{W}^{2}\right) = \frac{D\left(\mathbf{x}_{W}^{1}, \mathbf{x}_{W}^{2}\right)}{S\left(\mathbf{x}_{W}^{1}, \mathbf{x}_{W}^{2}\right)} \in [-1, 1] \qquad \mathbf{x}_{C}^{i} = \left(\frac{x_{Lx}^{i} + x_{Rx}^{i}}{2}, x_{y}^{i}\right), \quad i \in \{1, 2\}$$

B. Busam et al. Stereo Vision for Robotic Movement Therapy

Material and Hardware

Robots

- Light-weight robotic arm: LBR 4+ (KUKA, Germany)
- Latency tests: UR-6-85-5-A (Universal Robots, Denmark)
- Vision System
 - Cameras: GC1291M-BL (SMARTEK Vision, Croatia)
 - Lenses: Fisheye 135° FoV. DSL315B-NIR (Sunex, USA)
 - Filters: IF 093 NIR bandpass (Schneider-Kreuznach, Germany)
 - Illumination: Direct ringlight FLDR-i70A @ 875 nm (FALCON Illumination, Malaysia)
 - Strobe controller: IPSC2 (SMARTEK Vision, Croatia)
 - External tracking system: Polaris Vicra (NDI, Canada)
- Computing Hardware
 - Image processing & tracking: Intel Core i7 960 @ 3.2 GHz
 - Robot control: Intel Core i5 4690K @ 3.5 GHz
- Markers: Retroreflective film (3M, USA)