Master kickoff presentation

Natural marker extraction and learning for binocular images and 6D pose estimation

Mahdi Saleh 12.08.2016 Supervisors Benjamin Busam Federico Tombari

Overview

- Problem statement
- Challenges
- Related works
- Initial solutions
- Early results
- Further plans

Problem statement

- Framos OTS detects markers on an object and outputs 3D Pose accurately and fast.
 - Busam et al. *A Stereo Vision Approach for Cooperative Robotic Movement Therapy* ICCVW, Santiago, Chile, December 2015
- Learn some natural markers
- Video input with known 6DOF pose > See slide 04

FRAMOS

Problem statement

Training video

Input stereo for evaluation

What we want

Challenges

- Robust, fast calculation
- Discriminative keypoints
- Symmetry
- Highly textured to texture less
- Not direct 3D pose estimation

Image taken from hema.nl, August 2016

Image taken from living4me.de, August 2016

Image taken from pixabay.com, August 2016

Early handcrafted features used for pose estimation

- Harris Corner Detector
 - Harris et al. **A combined corner and edge detector**. Proceedings of the 4th Alvey Vision Conference. 1988.
- SIFT
 - Lowe et al. Distinctive image features from scale-invariant keypoints. ICCV 2004, Springer.
- HOG
 - Dalal et al. Histograms of Oriented Gradients for Human Detection. CVPR, 2005.
- SURF
 - Bay et al. Speeded Up Robust Features, ECCV 2006
- BRISK
 - Leutenegger et al., BRISK: Binary Robust Invariant Scalable Keypoints. /CCV 2011.
- LINEMOD
 - Hinterstoisser et al., Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. ACCV 2012.

Training keypoints by SVM or boosting

- Learning HOG models for viewport classification
 - Gu et al. Discriminative Mixture-of-Templates for Viewpoint Classification. In ECCV, 2010.
- Does not consider the pose estimation problem
 - Malisiewicz et al. Ensemble of Exemplar-SVMs for Object Detection and Beyond. ICCV, 2011.
- Exemplars were recently used for 3D object detection and pose estimation, but still rely on a handcrafted representation.
 - Aubry et al. Seeing 3D Chairs: Exemplar Part-Based 2D-3D alignement Using a Large Dataset of CAD Models. CVPR, 2014.

Wohlhart et al. "Learning descriptors for object recognition and 3d pose estimation." CVPR 2015.

- Trains RGB-D objects from different poses on a CNN network
 - Finds object class and its 3D pose
 - K-nearest neighbor search in descriptor space

Verdie, Yannick, et al. "TILDE: A Temporally Invariant Learned DEtector." CVPR 2015

- Finding keypoints under drastic changes
 - Extracts keypoints on all image
 - If the batch of images has frequent keypoints in a point, the point is a positive location
 - Uses regression to train patches
 - Tries different regressions

						Webcam	Oxfe	ord	EF		
			4		#keypoints	(2%)	Stand.	(2%)	Stand.	(2%)	
	18hill				TILDE-GB	33.3	54.5	32.8	43.1	16.2	
	ALL AN			ALL AND	TILDE-CNN	36.8	51.8	49.3	43.2	27.6	
	A ASSAULT	Manager Cha	STA PERA	The strategy and	TILDE-P24	40.7	58.7	59.1	46.3	33.0	
					TILDE-P	48.3	58.1	55.9	45.1	31.6	
Louis Harding	and the Walk and and	- inite in the	and the fille and the	and Pail Anima from	FAST-9	26.4	53.8	47.9	39.0	28.0	
					SFOP	22.9	51.3	39.3	42.2	21.2	
					SIFER	25.7	45.1	40.1	27.4	17.6	
		Station .		the of	SIFT	20.7	46.5	43.6	32.2	23.0	
	Lend A	Min .	-PURI Sauce	-THUL &	SURF	29.9	56.9	57.6	43.6	28.7	
					TaSK	14.5	25.7	15.7	22.8	10.0	
(a) Original images	(b) SIFT	(c) SURF	(d) FAST-9	(e) Our keypoints	WADE	27.5	44.3	51.0	25.6	28.6	
((-)			(1),1	MSER	22.3	51.5	35.9	38.9	23.9	
					LCF	30.9	55.0	40.1	41.6	23.1	
1					EdgeFoci	30.0	54.9	47.5	46.2	31.0	

Simo-Serra et al. "Discriminative learning of deep convolutional feature point descriptors." *ICCV* 2015.

- Trains the network on sets of matching and unmatching patches
 - The CNN outputs are 128-D descriptor
 - Some tied weights between two networks
 - Easy matching using Euclidean distance

Initial Solutions

- 1. Train a CNN on the pairs of images with their corresponding pose and try to get the pose directly similar to "Learning Descriptors for Object Recognition and 3D Pose Estimation"
- 2. Finding keypoints/corners based on a conventional keypoint detectors. Filter and project them in 3D using stereo. train a network on best keypoints

Initial Solutions

- 3. Finding the rough 3D surface of the object from stereo matching and chose some points uniformly around it
 - Need for a reliable stereo matching algorithm
 - No descriptor

Computer Aided Medical Procedures

January 17, 2017 Slide 12

FRAMOS

Dataset Creation

- Initially 6 models from the website <u>www.turbosquid.com</u>
- The objects are different from textured to textureless
- Objects are rendered in 500 frames from a list of different poses in 640x480
- A set is also rendered with checkerboard plane for stereo camera calibration
- Maxscript used for reading input, transformation and automatic rendering
- Time-lapse video on background

Right camera sample images from dwarf object

CA MX

2D Keypoint matching

- A pool of SIFT, SURF, MSER and Harris is created
- Then we do stereo triangulation and 3D points transformation

Computer Aided Medical Procedures

Computer Aided Medical Procedures

K-means for keypoint candidates

- Up to 400 labels based on the locations
- The classes with less than a threshold (here 15) population are filtered
- Keypoints repetition and mean of quaternion pose shown with size and color

Keypoint candidates and their pose and repetition

Keypoint reprojection

- Backprojection of all keypoints on stereo pairs
- Big uncertainty whether a keypoint is back of the object and therefore not seen
- Neighborhood, depth and poses are checked to overcome this

Best keypoint selection

- Keypoint are scored based on some promoting criteria
- Discrimination: based on distance of the mean of descriptors of a keypoint to all the means
- Each frame has a single vote: The summation of discriminations for every frame is the same
- Repetitiveness: based on number of frames a keypoint is seen
- Widely distributed: in a 3D neighborhood the best rated keypoint is selected
- selected keypoints are reprojected again
- A 40x40 patch is taken from around the keypoints

Selected Keypoint reprojection samples on left images

Deep learning

- Keypoint patches + false patches (50% object region, 50% surroundings)
- For accuracy improvement and ease of marker registration task binary classification is turned to marker classification
- Microsoft CNTK has been used for training
- 80% of dataset(~140K images) for training, 20% for test
- Data augmentation using Matlab and some using CNTK are applied. An SGD with drop out is used, with a decreasing learning rate
- Architecture inspired from TILDE paper with some changes
- Initial training error around 2% and test error around 5%

Further Plans

- Marker registration using Hungarian method should be applied
- Machine learning part still needs some work
- Reprojection filters needs some adaptation for different objects
- Bug fixes
- Writing up the thesis

٤

Task Name	Apr			May				J	lun				Jul					
		Apr 17 Apr 24 I	May 1 Ma	y8 May	15 May 2	22 Ma	iy 29 🛛 Ju							17				
1 Reading Papers			Readir	g Papers														
2 General Papers		General Papers																
3 Kickoff meeting		📩 Kickoff mee	ting															
4 Papers			Papers															
5 Implementation																		
6 Keypoint Extraction					Keypoint	Extraction	ı											
7 3D transformation and filters					+				3D trans	formation an	d filters							
8 Filter improvements and adaptability																		
9 Deep learning									+			D	eep learning					
10 Deep learning improvement																		
11 Marker registration and pose estimation	Task Name			Jul			Aug									Oct		
12 Dataset Creation			Jul 17	Jul 24	Jul 31	Aug 7	Aug 14	Aug 21	Aug 28	Sep 4	Sep 11	Sep 18	Sep 25	Oct 2	Oct 9	Oct 16	Oct 23	Oct 30
13 Models and images finding and editing	1 E Reading Papers																	
14 Maxscripting for rendering	2 General Papers																	
15 Adaptations	3 Kickoff meeting						8											
16 Master thesis	4 Papers																	
17 Writing up	5 Implementation													Imp	ementation			
18 Final Presentation	6 Keypoint Extract	tion																
	7 3D transformatio	on and filters																
	8 Filter improveme							F	lter improver	ments and ad	aptability							
9 Deep learning																		
	10 Deep learning improvement 11 Marker registration and pose estimation						•		Deep le	earning impro	ovement							
							•							Ma	rker registrati	on and pose e	estimation	
	12 Dataset Creation																	
	13 Models and ima	M	odels and ima	ages finding ar	nd editing													
	14 Maxscripting for	rendering				N	Aaxscripting f	or rendering										
	15 Adaptations					A	daptations											
	16 Master thesis							-										
	17 Writing up													-	-	V	Vriting up	
	18 Final Presen	tation																

Gant Chart for the plans

Computer Aided Medical Procedures

January 17, 2017 Slide 22

FRAMOS