Disparity Determination in Stereo Vision

Lu Sang, Michael Haberl, Raphael Ullmann

22.07.2017

Algorithms

Results

Algorithms

Results

Lu Sang, Michael Haberl, Raphael Ullmann

- What is the distance to an object?
- How to determine the distance by 2D images?

 $^{^{1} {\}rm https://upload.wikimedia.org/wikipedia/commons/4/49/Roboterhand.mit.Gluehbirne.png}$

- What is the distance to an object?
- How to determine the distance by 2D images?
- Applications
 - Autonomous driving
 - Robotics
 - Object recognition

1

 $^{1} \rm https://upload.wikimedia.org/wikipedia/commons/4/49/Roboterhand.mit.Gluehbirne.png$

Stereo Cameras

Figure: Left Picture [1]

Figure: Right Picture

Figure: Left Picture [1]

Figure: Right Picture

Figure: Left Picture [1] Figure: Right Picture

 Calculate for the pixels in the left image costs in the right image

Figure: Left Picture [1] Figure: Right Picture

- Calculate for the pixels in the left image costs in the right image
- 2 Pixel with minimal cost is the corresponding pixel

Disparity

Disparity

Disparity

Pixel distance of related pixels.

Distance

$$z = \frac{f \cdot b}{d}$$

- Distance z
- Focal length of the camera f
- Disparity d

Algorithms

Results

Overview

Overview

Lu Sang, Michael Haberl, Raphael Ullmann

Pre-processing: Undistortion

Original Picture

Undistorted Picture

Lu Sang, Michael Haberl, Raphael Ullmann

Pre-processing: Undistortion

Original Picture

Undistorted Picture

Left Picture

Right Picture

Lu Sang, Michael Haberl, Raphael Ullmann

Left Picture

Right Picture

Modelling: Energy Function

Energy Function

$\operatorname{argmin}_d C(p,d) + S(p,d)$

- Cost C(p, d) for every pixel p and disparities d = 1, ..., D
- Regularization S(p, d)
 - E.g. penalty for deviation of neighbouring pixels

Cost Calculation: Comparing Windows

Cost Calculation: Comparing Windows

Lu Sang, Michael Haberl, Raphael Ullmann

Cost Calculation: Cross Correlation

Cost Calculation: Cross Correlation

Cost Calculation: Cross Correlation

=

Total sum = 2 \Rightarrow Costs = -2

Total sum = 2
$$\Rightarrow$$
 Costs = -2

Total sum = 2 \Rightarrow Costs = -2

=

Total sum = 2 \Rightarrow Costs = -2

Total sum = 4 \Rightarrow Costs = -4

Total sum = 2 \Rightarrow Costs = -2

Total sum = 4 \Rightarrow Costs = -4

Normalization and Zero Mean: Values in [-1, 1]

Cost Calculation: Result

Cost Calculation: Result

Cost Calculation: Result

• Error Rate of NCC: 33.09%

Test Data

Figure: Right Image

Test Data

- Middlebury Dataset
- Ground Truth
- Leaderboard

Algorithm Defect

Pyramid Scheme

Pyramid Scheme

Pyramid Scheme

Pyramid Scheme: Results

Figure: Results of NCC

Figure: Results of Pyramid Scheme

- Error Rate of NCC: 33.09%
- Error Rate of Pyramid Scheme: 28.1%

- Interpret Cross Correlation as confidence indicator
- Use only pixels with high confidence
- Replace low confidence by values with high confidence in the window

Force Local Consistency: Confidence Map

Figure: Results of NCC

Figure: Confidence Map

- Black point: trustworthy pixel with correct disparity (C(p) ≥ T).
- Red point: unreliable pixel with violated disparity (C(p) < T).

1 Mark all violated pixels.

- 1 Mark all violated pixels.
- 2 Find the pixel with max NCC coefficient.

- 1 Mark all violated pixels.
- 2 Find the pixel with max NCC coefficient.
- **3** Replace the disparity value by using the disparity of new pixel.

Force Local Consistency: Results

Figure: Results of NCC

Figure: Results of FLC

- Error Rate of NCC: 33.09%
- Error Rate of FLC: 26.90%

Local Penalty

Local Penalty

- 1 Smoothness check
- 2 Search four directions
- 3 Punish on NCC coefficient

4 Iterate

Post Processing: Median Filter

Final Results

Figure: Results of FLC

Figure: After Post-processing

- Error Rate of FLC: 26.90%
- Error Rate of FLC + Median filter: 21.10%

Problem Description

Algorithms

Results

Results: Average Error Rates

Own Pictures

Figure: Left Image

Figure: Pyramid Scheme + Median Filter

Own Pictures

Figure: Left Image

Figure: Pyramid Scheme + Median Filter

Summary

Failed Approaches

- Disparity Calculation:
 - Cost Aggregation
 - Gradient Guided Weighted Match
 - Neural Network
- Disparity Refinement
 - Local Interpolation
 - Cubic Plane Interpolation
 - Segment Penalty
- Post-processing
 - Bilateral Filter
 - Gradient Guided Mask Filter

Failed Approaches

- Disparity Calculation:
 - Cost Aggregation
 - Gradient Guided Weighted Match
 - Neural Network
- Disparity Refinement
 - Local Interpolation
 - Cubic Plane Interpolation
 - Segment Penalty
- Post-processing
 - Bilateral Filter
 - Gradient Guided Mask Filter

Figure: Disparity Image using Neural Networks

Thanks!

Sources

 D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang, and P. Westling. High-resolution stereo datasets with subpixel-accurate ground truth. In German Conference on Pattern Recognition (GCPR 2014), Münster, Germany, September 2014