Master Thesis - Final Presentation

Natural marker extraction and learning for binocular images and 6D pose estimation

Mahdi Saleh 10.03.2017 Supervisors Benjamin Busam Federico Tombari

Technische Universität Müncher

Problem Statement

- 1. Framos OTS detects markers on an object and outputs 3D Pose accurately and fast.
 - Busam et al. A Stereo Vision Approach for Cooperative Robotic Movement Therapy, ICCVW 2015
- 2. Extract and learn natural markers instead
- 3. Video input with known 6DOF pose

Problem Statement

Training video

Input stereo for evaluation

What we want

Challenges

- Robust and distinctive keypoints
- Symmetric objects
- Highly textured to textureless objects

Image taken from hema.nl, 10.10.2016

Image taken from living4me.de, 10.10.2016

Image taken from pixabay.com, 10.10.2016

March 15, 2017 Slide 4

FRAMOS

Related Works

Handcrafted features used for pose estimation

- Harris Corner Detector
 - Harris et al. A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, 1988.
- SIFT
 - Lowe et al. Distinctive image features from scale-invariant keypoints. ICCV 2004.
- HOG
 - Dalal et al. Histograms of Oriented Gradients for Human Detection. CVPR 2005.
- SURF
 - Bay et al. Speeded Up Robust Features, ECCV 2006
- BRISK
 - Leutenegger et al. BRISK: Binary Robust Invariant Scalable Keypoints. ICCV 2011.
- LINEMOD
 - Hinterstoisser et al. Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. ACCV 2012.

FRAMOS

Related Works

Training keypoints by SVM or boosting

- Learning HOG models for viewport classification
 - Gu et al. Discriminative Mixture-of-Templates for Viewpoint Classification. ECCV 2010.
- Without pose estimation problem
 - Malisiewicz et al. Ensemble of Exemplar-SVMs for Object Detection and Beyond. ICCV 2011.
- Exemplars were recently used for 3D object detection and pose estimation, but still rely on a handcrafted representation.
 - Aubry et al. Seeing 3D Chairs: Exemplar Part-Based 2D-3D alignement Using a Large Dataset of CAD Models. CVPR 2014.

Related Works

Wohlhart et al. "Learning descriptors for object recognition and 3d pose estimation." CVPR 2015.

- Trains RGB-D objects from different poses on a CNN network
 - Finds object class and its 3D pose
 - K-nearest neighbor search in descriptor space

Related Works

Verdie et al. "TILDE: A Temporally Invariant Learned DEtector." CVPR 2015

- Finding keypoints under severe illumination changes
 - Extracts keypoints on all image
 - If the batch of images has frequent keypoints in a point, the point is a positive location
 - Uses regression to train patches
 - Tries different regressions

						Webcam	Oxfe	ord	El	F
					#keypoints	(2%)	Stand.	(2%)	Stand.	(2%)
	18 hall				TILDE-GB	33.3	54.5	32.8	43.1	16.2
	ALL AN			ALL AN	TILDE-CNN	36.8	51.8	49.3	43.2	27.6
The second s	AND ALLOW	Manager and State	TTY END	and the second second	TILDE-P24	40.7	58.7	59.1	46.3	33.0
					TILDE-P	48.3	58.1	55.9	45.1	31.6
Landan under	mall Brits Manual and	Rika	Same Line & Manufacture	and Palketers him	FAST-9	26.4	53.8	47.9	39.0	28.0
					SFOP	22.9	51.3	39.3	42.2	21.2
					SIFER	25.7	45.1	40.1	27.4	17.6
A CALL HITTH SALES					SIFT	20.7	46.5	43.6	32.2	23.0
	Land A Concerning	Phillippine -	men tana	-man Sail-	SURF	29.9	56.9	57.6	43.6	28.7
					TaSK	14.5	25.7	15.7	22.8	10.0
(a) Original images	(b) SIFT	(c) SURF	(d) FAST-9	(e) Our keypoints	WADE	27.5	44.3	51.0	25.6	28.6
()	(0) 000 0		(0)	(c) our mypound	MSER	22.3	51.5	35.9	38.9	23.9
					LCF	30.9	55.0	40.1	41.6	23.1
					EdgeFoci	30.0	54.9	47.5	46.2	31.0

Simo-Serra et al. "**Discriminative learning of deep convolutional feature point descriptors**." *ICCV* 2015.

- Trains the network on sets of matching and unmatching patches
 - The CNN outputs are 128-D descriptor
 - Some tied weights between two networks
 - Easy matching using Euclidean distance

Our Solution

- 1. Extract a pool of handcrafted features
- 2. Triangulate and build up a point cloud
- 3. Score and filter keypoints
- 4. Backprojection of the best keypoints on the images
- 5. Train a CNN classifier on the patches with/without markers

FRAMOS

Synthetic dataset

- 6 models from the website Turbosquid* and self-created
- The objects have different level of textures and geometries
- 1,000 frames rendered from a list of different poses in 1024x768 pixel resolution
- Maxscript used for reading ground truth, transformation and automatic rendering
- Random office and home space as background

Dwarf

Camera

Pillow

Beets

Earth

*www.turbosquid.com, access on 21.11.2016

Sample images of Dwarf model

Computer Aided Medical Procedures

- Reflective markers are attached to a plane ۲
- The plane is moved and rotated freely •
- 5 different streams are captured Simultaneously at 5Hz •
- Ground truth pose is calculated via marker registration of plane
 - Busam et al. A Stereo Vision Approach for Cooperative Robotic Movement Therapy, ICCVW 2015 •
- Kinect depth images are captured for RGB-D based algorithms in dataset

Multi Camera setup

KINECT

for XBOX 360

Truck

Tea-mug Dataset objects on the trackable plane

March 15, 2017 Slide 13

FRAMOS

FRAMOS OTS Optical Tracking System for Medical Imaging Applications

Sample images for 4 objects in a known pose

Keypoint Extraction

2D Keypoint matching

- A pool of SIFT[1], SURF[2], MSER[3] and Harris[4] is created
- Filtering using epipolar lines
- Matching and triangulation
- 3D points are transformed to reference coordinates using pose

Keypoint matching samples for stereo image pairs

[1] Lowe et al. Distinctive image features from scale-invariant keypoints. ICCV 2004.

[2] Bay et al. Speeded Up Robust Features, ECCV 2006

[3] Matas et al. Robust wide baseline stereo from maximally stable extremal regions, BMVC 2002

[4] Harris et al. A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, 1988.

Keypoint Extraction

FRAMOS

Point-cloud Processing

- We cluster keypoints in 3D using mean-shift algorithm
 - •Cheng et al. Mean Shift, Mode Seeking, and Clustering. PAMI 1995
- Mean-shift is parameterless
- Clustering is done in 6D-space (color+position)

Mean-shift update schema

Point-cloud Processing

- Clusters with few points are eliminated
- Mean-shift centroids are keypoints
- Mean color and mean FREAK feature is computed
 - Alahi et al. Freak: Fast retina keypoint. CVPR 2012

Computer Aided Medical Procedures

FRAMOS

Point-cloud Processing

Computer Aided Medical Procedures

Keypoint reprojection

- In order to find the number of kepoint occurrences on images
- Rendering sparse point cloud is challenging
- Big uncertainty whether a keypoint is not visible
- Different checks based on pose, feature, pose,... failed
- Estimate normal vectors using PCA[1]
 - A neighborhood of point is found using K-Nearest-Neigbors (KNN) [2]
 - A surface is fitted to the points using first two principle components
 - Normal vector is computed using their cross product

A M P

Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 1901
Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992

Keypoint reprojection

- Normal vector is computed for the point cloud
- Keypoints are projected on stereo images

Keypoint reprojection

- Keypoints are projected on stereo images
- Visibility of keypoint is assessed
 - Normal vector angle with camera ray
 - Left right color check

Raytracing for rendering using normal vectors

Marker reprojections for some frame samples of Dwarf object

Scoring Criteria

- Distinctiveness: A metric to privilege non-similar salient keypoints
 - Sum of L2 Distances to other FREAK[1] descriptors
- Each frame has a single vote:
 - The summation of discriminations for every frame is the same
- **Repetitiveness**: Privilege the keypoints that are seen in a wide range of view
 - Reprojection occurrences are counted
- Widely distributed: a minimum number of keypoints should be seen in a view
- Take locally best scored keypoint

Marker candidates point cloud, their scoring and the selected best markers for the Dwarf object

[1] Alahi et al. Freak: Fast retina keypoint. CVPR 2012

Marker Training

Dataset Creation

- Selected markers are backprojected
- 40x40 patch is created around them
- Data augmentations
 - Shifting, rotation and scaling
 - Brightness, contrast, saturation
- Marker labels are stored {1,..,n}
- Markerless patches are in class 0
 - 70% outside object region
 - 30% inside object region
- Nearly 200k images for 15 markers
- 80% training set and 20% test set
- Evaluation set on some other sequence with known pose
 - 8 pixel interval
 - Pose estimation

Patch samples for some classes of dwarf object

Marker Praining

FRAMOS

CNN learning

- Microsoft CNTK used for training
 - Seide et al. CNTK: Microsoft's Open-Source Deep-Learning Toolkit, SIGKDD 2016
- A mini-batch SGD with decreasing learning rate is used
 - •Li et al. Efficient Mini-batch Training for Stochastic Optimization, ACM, 2014
- Architecture inspired from LeNet-5* with some changes inspired from TILDE
 - LeCun et al, **Gradient-based learning applied to document recognition**, Proceedings of the IEEE, 1998
 - Verdie et al. "TILDE: A Temporally Invariant Learned DEtector." CVPR 2015

Pose Estimation

Point Cloud build-up

- Likelihood maps are created for each keypoint
- Map resized to full size image
- Using epipolar lines the maps are swept
- Likelihoods without match diminished
- Maximum of the two maps is triangulated
- Applied to all marker likelihood maps

Stereo filtering output

Pose Estimation

Pose estimation

- Registering reference point cloud to evaluated point cloud
- The [R,t] is the estimated pose
- Different combinations of evaluated point cloud is tried
 - [R, t] is calculated using accumulated covariance matrix H
 - Rotation is calculated using SVD
 - t is estimated after R
- The pose of combination with least error is selected

Finding R by bringing point clouds to a reference coordinates

Reference and evaluated point cloud and their centroid

Computer Aided Medical Procedures

Results and Evaluation

Marker point cloud evaluation

- No benchmark to evaluate stereo keypoint extraction
- Average speed to build a point cloud from video sequence <1 hour on Intel CORE-i7 6700 CPU
- Quantitative evaluation is done
- Marker calculation is done with different sequences
- The resulting point clouds are compared
- The RMS error between point clouds is calculated

0	bject	Number of markers	Mean # of visible keypoints per frame	RMS error [mm]	Outliers
	Dwarf	17	6.86	2.4354	2
	Pillow	20	7.34	2.3171	4
	Earth	14	7.84	3.2647	1
6	Camera	20	8.86	2.8927	3
	Beets	15	6.82	3.1193	1
	Box	17	8.78	2.7622	2
Av	erage	17.16	7.75	2.7985	2.16

Results and Evaluation

Marker training evaluation

- Training is done for 60 epochs
- Test is done using a different set
- Average speed to train markers around 2 hours on NVIDIA GeForce GTX 970 GPU

Object		Training error	Test error	Cross entropy	50.00%
р 🖉 С	Dwarf	1.48%	12.76%	0.0845	45.00%
P	Pillow	0.79%	11.11%	0.0729	40.00% 35.00%
	Earth	0.88%	11.88%	0.0769	30.00%
🇊 Ca	mera	1.41%	15.13%	0.0981	9 25.00% N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
jj e	Beets	5.81%	14.78%	0.2109	15.00%
	Box	0.64%	14.03%	0.0657	5.00%
Avera	ge	1.83%	13.28%	0.1015	0.00% 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Training error for Dwarf object

Computer Aided Medical Procedures

Results and Evaluation

Pose estimation errors

- Evaluated on a set of frames with known pose (30 frames)
- Average speed to estimate pose from network output is <30 sec on Intel CORE-i7 6700 CPU

Object	Angle error [degree]	Distance error [mm]	Rejection rate		
🔵 Dwarf	5.4862	7.0438	33.3%		
Market Pillow	3.8803	5.0497	10.0%		
🌍 Earth	4.3718	3.9942	50.0%		
🇊 Camera	6.2057	4.9467	23.3%		
🥫 Beets	8.2237	5.9485	20.0%		
Sox Box	4.2041	5.9312	46.6%		
Average	5.3953	5.4854	30.5%		

FRAMOS

Retrospective

FRAMOS

- A lot of personal learning and challenges
- Pose estimation results promising

Future works

- Marker dataset is prone to error
- Pitfalls like repeating texture and monotonous textures
- Long and slow pipeline
- Pose estimation procedure can be improved
- Adapting real dataset for the pipeline

Thanks for your attention

Questions?

Computer Aided Medical Procedures